201 lines
7.8 KiB
Python
201 lines
7.8 KiB
Python
# Model validation metrics
|
|
|
|
from pathlib import Path
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
|
|
from . import general
|
|
|
|
|
|
def fitness(x):
|
|
# Model fitness as a weighted combination of metrics
|
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
|
return (x[:, :4] * w).sum(1)
|
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
|
|
""" Compute the average precision, given the recall and precision curves.
|
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
|
# Arguments
|
|
tp: True positives (nparray, nx1 or nx10).
|
|
conf: Objectness value from 0-1 (nparray).
|
|
pred_cls: Predicted object classes (nparray).
|
|
target_cls: True object classes (nparray).
|
|
plot: Plot precision-recall curve at mAP@0.5
|
|
save_dir: Plot save directory
|
|
# Returns
|
|
The average precision as computed in py-faster-rcnn.
|
|
"""
|
|
|
|
# Sort by objectness
|
|
i = np.argsort(-conf)
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
|
|
|
# Find unique classes
|
|
unique_classes = np.unique(target_cls)
|
|
|
|
# Create Precision-Recall curve and compute AP for each class
|
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
|
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
|
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
|
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
|
for ci, c in enumerate(unique_classes):
|
|
i = pred_cls == c
|
|
n_l = (target_cls == c).sum() # number of labels
|
|
n_p = i.sum() # number of predictions
|
|
|
|
if n_p == 0 or n_l == 0:
|
|
continue
|
|
else:
|
|
# Accumulate FPs and TPs
|
|
fpc = (1 - tp[i]).cumsum(0)
|
|
tpc = tp[i].cumsum(0)
|
|
|
|
# Recall
|
|
recall = tpc / (n_l + 1e-16) # recall curve
|
|
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
|
|
|
# Precision
|
|
precision = tpc / (tpc + fpc) # precision curve
|
|
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
|
|
|
# AP from recall-precision curve
|
|
for j in range(tp.shape[1]):
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
|
if plot and (j == 0):
|
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
|
|
|
# Compute F1 score (harmonic mean of precision and recall)
|
|
f1 = 2 * p * r / (p + r + 1e-16)
|
|
|
|
if plot:
|
|
plot_pr_curve(px, py, ap, save_dir, names)
|
|
|
|
return p, r, ap, f1, unique_classes.astype('int32')
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
""" Compute the average precision, given the recall and precision curves
|
|
# Arguments
|
|
recall: The recall curve (list)
|
|
precision: The precision curve (list)
|
|
# Returns
|
|
Average precision, precision curve, recall curve
|
|
"""
|
|
|
|
# Append sentinel values to beginning and end
|
|
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
|
|
mpre = np.concatenate(([1.], precision, [0.]))
|
|
|
|
# Compute the precision envelope
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
|
|
|
# Integrate area under curve
|
|
method = 'interp' # methods: 'continuous', 'interp'
|
|
if method == 'interp':
|
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
|
else: # 'continuous'
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
|
|
|
return ap, mpre, mrec
|
|
|
|
|
|
class ConfusionMatrix:
|
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
|
self.nc = nc # number of classes
|
|
self.conf = conf
|
|
self.iou_thres = iou_thres
|
|
|
|
def process_batch(self, detections, labels):
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
|
Returns:
|
|
None, updates confusion matrix accordingly
|
|
"""
|
|
detections = detections[detections[:, 4] > self.conf]
|
|
gt_classes = labels[:, 0].int()
|
|
detection_classes = detections[:, 5].int()
|
|
iou = general.box_iou(labels[:, 1:], detections[:, :4])
|
|
|
|
x = torch.where(iou > self.iou_thres)
|
|
if x[0].shape[0]:
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
|
if x[0].shape[0] > 1:
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
else:
|
|
matches = np.zeros((0, 3))
|
|
|
|
n = matches.shape[0] > 0
|
|
m0, m1, _ = matches.transpose().astype(np.int16)
|
|
for i, gc in enumerate(gt_classes):
|
|
j = m0 == i
|
|
if n and sum(j) == 1:
|
|
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
|
|
else:
|
|
self.matrix[gc, self.nc] += 1 # background FP
|
|
|
|
if n:
|
|
for i, dc in enumerate(detection_classes):
|
|
if not any(m1 == i):
|
|
self.matrix[self.nc, dc] += 1 # background FN
|
|
|
|
def matrix(self):
|
|
return self.matrix
|
|
|
|
def plot(self, save_dir='', names=()):
|
|
try:
|
|
import seaborn as sn
|
|
|
|
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
|
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
|
|
|
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
|
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
|
|
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
|
|
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
|
|
xticklabels=names + ['background FN'] if labels else "auto",
|
|
yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1))
|
|
fig.axes[0].set_xlabel('True')
|
|
fig.axes[0].set_ylabel('Predicted')
|
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
|
except Exception as e:
|
|
pass
|
|
|
|
def print(self):
|
|
for i in range(self.nc + 1):
|
|
print(' '.join(map(str, self.matrix[i])))
|
|
|
|
|
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
|
|
|
def plot_pr_curve(px, py, ap, save_dir='.', names=()):
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
py = np.stack(py, axis=1)
|
|
|
|
if 0 < len(names) < 21: # show mAP in legend if < 10 classes
|
|
for i, y in enumerate(py.T):
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
|
|
else:
|
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
|
ax.set_xlabel('Recall')
|
|
ax.set_ylabel('Precision')
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
|
fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)
|