206 lines
8.2 KiB
Python
206 lines
8.2 KiB
Python
# Loss functions
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from utils.general import bbox_iou
|
|
from utils.torch_utils import is_parallel
|
|
|
|
|
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
|
# return positive, negative label smoothing BCE targets
|
|
return 1.0 - 0.5 * eps, 0.5 * eps
|
|
|
|
|
|
class BCEBlurWithLogitsLoss(nn.Module):
|
|
# BCEwithLogitLoss() with reduced missing label effects.
|
|
def __init__(self, alpha=0.05):
|
|
super(BCEBlurWithLogitsLoss, self).__init__()
|
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
|
self.alpha = alpha
|
|
|
|
def forward(self, pred, true):
|
|
loss = self.loss_fcn(pred, true)
|
|
pred = torch.sigmoid(pred) # prob from logits
|
|
dx = pred - true # reduce only missing label effects
|
|
# dx = (pred - true).abs() # reduce missing label and false label effects
|
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
|
loss *= alpha_factor
|
|
return loss.mean()
|
|
|
|
|
|
class FocalLoss(nn.Module):
|
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
|
super(FocalLoss, self).__init__()
|
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
|
self.gamma = gamma
|
|
self.alpha = alpha
|
|
self.reduction = loss_fcn.reduction
|
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
|
|
|
def forward(self, pred, true):
|
|
loss = self.loss_fcn(pred, true)
|
|
# p_t = torch.exp(-loss)
|
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
|
|
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
|
modulating_factor = (1.0 - p_t) ** self.gamma
|
|
loss *= alpha_factor * modulating_factor
|
|
|
|
if self.reduction == 'mean':
|
|
return loss.mean()
|
|
elif self.reduction == 'sum':
|
|
return loss.sum()
|
|
else: # 'none'
|
|
return loss
|
|
|
|
|
|
class QFocalLoss(nn.Module):
|
|
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
|
super(QFocalLoss, self).__init__()
|
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
|
self.gamma = gamma
|
|
self.alpha = alpha
|
|
self.reduction = loss_fcn.reduction
|
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
|
|
|
def forward(self, pred, true):
|
|
loss = self.loss_fcn(pred, true)
|
|
|
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
|
loss *= alpha_factor * modulating_factor
|
|
|
|
if self.reduction == 'mean':
|
|
return loss.mean()
|
|
elif self.reduction == 'sum':
|
|
return loss.sum()
|
|
else: # 'none'
|
|
return loss
|
|
|
|
|
|
def compute_loss(p, targets, model): # predictions, targets, model
|
|
device = targets.device
|
|
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
|
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
|
h = model.hyp # hyperparameters
|
|
|
|
# Define criteria
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights)
|
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
|
|
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
|
cp, cn = smooth_BCE(eps=0.0)
|
|
|
|
# Focal loss
|
|
g = h['fl_gamma'] # focal loss gamma
|
|
if g > 0:
|
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
|
|
|
# Losses
|
|
nt = 0 # number of targets
|
|
no = len(p) # number of outputs
|
|
balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
|
for i, pi in enumerate(p): # layer index, layer predictions
|
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
|
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
|
|
|
n = b.shape[0] # number of targets
|
|
if n:
|
|
nt += n # cumulative targets
|
|
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
|
|
|
# Regression
|
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
|
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
|
lbox += (1.0 - iou).mean() # iou loss
|
|
|
|
# Objectness
|
|
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
|
|
|
# Classification
|
|
if model.nc > 1: # cls loss (only if multiple classes)
|
|
t = torch.full_like(ps[:, 5:], cn, device=device) # targets
|
|
t[range(n), tcls[i]] = cp
|
|
lcls += BCEcls(ps[:, 5:], t) # BCE
|
|
|
|
# Append targets to text file
|
|
# with open('targets.txt', 'a') as file:
|
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
|
|
|
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
|
|
|
s = 3 / no # output count scaling
|
|
lbox *= h['box'] * s
|
|
lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
|
|
lcls *= h['cls'] * s
|
|
bs = tobj.shape[0] # batch size
|
|
|
|
loss = lbox + lobj + lcls
|
|
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
|
|
|
|
|
def build_targets(p, targets, model):
|
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
|
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
|
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
|
tcls, tbox, indices, anch = [], [], [], []
|
|
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
|
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
|
|
|
g = 0.5 # bias
|
|
off = torch.tensor([[0, 0],
|
|
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
|
], device=targets.device).float() * g # offsets
|
|
|
|
for i in range(det.nl):
|
|
anchors = det.anchors[i]
|
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
|
|
|
# Match targets to anchors
|
|
t = targets * gain
|
|
if nt:
|
|
# Matches
|
|
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
|
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
|
t = t[j] # filter
|
|
|
|
# Offsets
|
|
gxy = t[:, 2:4] # grid xy
|
|
gxi = gain[[2, 3]] - gxy # inverse
|
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
|
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
|
t = t.repeat((5, 1, 1))[j]
|
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
|
else:
|
|
t = targets[0]
|
|
offsets = 0
|
|
|
|
# Define
|
|
b, c = t[:, :2].long().T # image, class
|
|
gxy = t[:, 2:4] # grid xy
|
|
gwh = t[:, 4:6] # grid wh
|
|
gij = (gxy - offsets).long()
|
|
gi, gj = gij.T # grid xy indices
|
|
|
|
# Append
|
|
a = t[:, 6].long() # anchor indices
|
|
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
|
anch.append(anchors[a]) # anchors
|
|
tcls.append(c) # class
|
|
|
|
return tcls, tbox, indices, anch
|