{ "cells": [ { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.feature_extraction.text import CountVectorizer\n", "from nltk.tokenize import RegexpTokenizer\n", "from stop_words import get_stop_words\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "data=pd.read_csv('dev-0/in.tsv', sep='\\t', header=None)\n", "expected_data=pd.read_csv('dev-0/expected.tsv', sep='\\t', header=None)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "data[0] = data[0].str.lower()\n", "filtered_words = [word for word in data[0] if word not in get_stop_words('polish')]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "token = RegexpTokenizer(r'[a-zA-Z0-9]+')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "cv = CountVectorizer(lowercase=True,ngram_range = (1,1),tokenizer = token.tokenize)\n", "text_counts= cv.fit_transform(data[0])" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<1x5048 sparse matrix of type ''\n", "\twith 234 stored elements in Compressed Sparse Row format>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text_counts" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(\n", " text_counts, expected_data[0], test_size=0.3, random_state=1)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MultinomialNB Accuracy: 0.6296296296296297\n" ] } ], "source": [ "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn import metrics\n", "clf = MultinomialNB().fit(X_train, y_train)\n", "predicted= clf.predict(X_test)\n", "print(\"MultinomialNB Accuracy:\",metrics.accuracy_score(y_test, predicted))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "from sklearn.feature_extraction.text import TfidfVectorizer\n", "tf=TfidfVectorizer()\n", "text_tf= tf.fit_transform(filtered_words)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " text_tf, expected_data[0], test_size=0.3, random_state=123)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MultinomialNB Accuracy: 0.2222222222222222\n" ] } ], "source": [ "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn import metrics\n", "clf = MultinomialNB().fit(X_train, y_train)\n", "predicted= clf.predict(X_test)\n", "print(\"MultinomialNB Accuracy:\",metrics.accuracy_score(y_test, predicted))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }