{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare test set"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import scipy.sparse as sparse\n",
"from collections import defaultdict\n",
"from itertools import chain\n",
"import random\n",
"from tqdm import tqdm\n",
"\n",
"# In evaluation we do not load train set - it is not needed\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"test.columns=['user', 'item', 'rating', 'timestamp']\n",
"\n",
"test['user_code'] = test['user'].astype(\"category\").cat.codes\n",
"test['item_code'] = test['item'].astype(\"category\").cat.codes\n",
"\n",
"user_code_id = dict(enumerate(test['user'].astype(\"category\").cat.categories))\n",
"user_id_code = dict((v, k) for k, v in user_code_id.items())\n",
"item_code_id = dict(enumerate(test['item'].astype(\"category\").cat.categories))\n",
"item_id_code = dict((v, k) for k, v in item_code_id.items())\n",
"\n",
"test_ui = sparse.csr_matrix((test['rating'], (test['user_code'], test['item_code'])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimations metrics"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"estimations_df=pd.read_csv('Recommendations generated/ml-100k/Ready_Baseline_estimations.csv', header=None)\n",
"estimations_df.columns=['user', 'item' ,'score']\n",
"\n",
"estimations_df['user_code']=[user_id_code[user] for user in estimations_df['user']]\n",
"estimations_df['item_code']=[item_id_code[item] for item in estimations_df['item']]\n",
"estimations=sparse.csr_matrix((estimations_df['score'], (estimations_df['user_code'], estimations_df['item_code'])), shape=test_ui.shape)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def estimations_metrics(test_ui, estimations):\n",
" result=[]\n",
"\n",
" RMSE=(np.sum((estimations.data-test_ui.data)**2)/estimations.nnz)**(1/2)\n",
" result.append(['RMSE', RMSE])\n",
"\n",
" MAE=np.sum(abs(estimations.data-test_ui.data))/estimations.nnz\n",
" result.append(['MAE', MAE])\n",
" \n",
" df_result=(pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns=list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" RMSE | \n",
" MAE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.949459 | \n",
" 0.752487 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" RMSE MAE\n",
"0 0.949459 0.752487"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in case of error (in the laboratories) you might have to switch to the other version of pandas\n",
"# try !pip3 install pandas=='1.0.3' (or pip if you use python 2) and restart the kernel\n",
"\n",
"estimations_metrics(test_ui, estimations)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ranking metrics"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[663, 475, 62, ..., 472, 269, 503],\n",
" [ 48, 313, 475, ..., 591, 175, 466],\n",
" [351, 313, 475, ..., 591, 175, 466],\n",
" ...,\n",
" [259, 313, 475, ..., 11, 591, 175],\n",
" [ 33, 313, 475, ..., 11, 591, 175],\n",
" [ 77, 313, 475, ..., 11, 591, 175]])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"reco = np.loadtxt('Recommendations generated/ml-100k/Ready_Baseline_reco.csv', delimiter=',')\n",
"# Let's ignore scores - they are not used in evaluation: \n",
"users=reco[:,:1]\n",
"items=reco[:,1::2]\n",
"# Let's use inner ids instead of real ones\n",
"users=np.vectorize(lambda x: user_id_code.setdefault(x, -1))(users)\n",
"items=np.vectorize(lambda x: item_id_code.setdefault(x, -1))(items) # maybe items we recommend are not in test set\n",
"# Let's put them into one array\n",
"reco=np.concatenate((users, items), axis=1)\n",
"reco"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def ranking_metrics(test_ui, reco, super_reactions=[], topK=10):\n",
" \n",
" nb_items=test_ui.shape[1]\n",
" relevant_users, super_relevant_users, prec, rec, F_1, F_05, prec_super, rec_super, ndcg, mAP, MRR, LAUC, HR=\\\n",
" 0,0,0,0,0,0,0,0,0,0,0,0,0\n",
" \n",
" cg = (1.0 / np.log2(np.arange(2, topK + 2)))\n",
" cg_sum = np.cumsum(cg)\n",
" \n",
" for (nb_user, user) in tqdm(enumerate(reco[:,0])):\n",
" u_rated_items=test_ui.indices[test_ui.indptr[user]:test_ui.indptr[user+1]]\n",
" nb_u_rated_items=len(u_rated_items)\n",
" if nb_u_rated_items>0: # skip users with no items in test set (still possible that there will be no super items)\n",
" relevant_users+=1\n",
" \n",
" u_super_items=u_rated_items[np.vectorize(lambda x: x in super_reactions)\\\n",
" (test_ui.data[test_ui.indptr[user]:test_ui.indptr[user+1]])]\n",
" # more natural seems u_super_items=[item for item in u_rated_items if test_ui[user,item] in super_reactions]\n",
" # but accesing test_ui[user,item] is expensive -we should avoid doing it\n",
" if len(u_super_items)>0:\n",
" super_relevant_users+=1\n",
" \n",
" user_successes=np.zeros(topK)\n",
" nb_user_successes=0\n",
" user_super_successes=np.zeros(topK)\n",
" nb_user_super_successes=0\n",
" \n",
" # evaluation\n",
" for (item_position,item) in enumerate(reco[nb_user,1:topK+1]):\n",
" if item in u_rated_items:\n",
" user_successes[item_position]=1\n",
" nb_user_successes+=1\n",
" if item in u_super_items:\n",
" user_super_successes[item_position]=1\n",
" nb_user_super_successes+=1\n",
" \n",
" prec_u=nb_user_successes/topK \n",
" prec+=prec_u\n",
" \n",
" rec_u=nb_user_successes/nb_u_rated_items\n",
" rec+=rec_u\n",
" \n",
" F_1+=2*(prec_u*rec_u)/(prec_u+rec_u) if prec_u+rec_u>0 else 0\n",
" F_05+=(0.5**2+1)*(prec_u*rec_u)/(0.5**2*prec_u+rec_u) if prec_u+rec_u>0 else 0\n",
" \n",
" prec_super+=nb_user_super_successes/topK\n",
" rec_super+=nb_user_super_successes/max(len(u_super_items),1) # to set 0 if no super items\n",
" ndcg+=np.dot(user_successes,cg)/cg_sum[min(topK, nb_u_rated_items)-1]\n",
" \n",
" cumsum_successes=np.cumsum(user_successes)\n",
" mAP+=np.dot(cumsum_successes/np.arange(1,topK+1), user_successes)/min(topK, nb_u_rated_items)\n",
" MRR+=1/(user_successes.nonzero()[0][0]+1) if user_successes.nonzero()[0].size>0 else 0\n",
" LAUC+=(np.dot(cumsum_successes, 1-user_successes)+\\\n",
" (nb_user_successes+nb_u_rated_items)/2*((nb_items-nb_u_rated_items)-(topK-nb_user_successes)))/\\\n",
" ((nb_items-nb_u_rated_items)*nb_u_rated_items)\n",
" \n",
" HR+=nb_user_successes>0\n",
" \n",
" \n",
" result=[]\n",
" result.append(('precision', prec/relevant_users))\n",
" result.append(('recall', rec/relevant_users))\n",
" result.append(('F_1', F_1/relevant_users))\n",
" result.append(('F_05', F_05/relevant_users))\n",
" result.append(('precision_super', prec_super/super_relevant_users))\n",
" result.append(('recall_super', rec_super/super_relevant_users))\n",
" result.append(('NDCG', ndcg/relevant_users))\n",
" result.append(('mAP', mAP/relevant_users))\n",
" result.append(('MRR', MRR/relevant_users))\n",
" result.append(('LAUC', LAUC/relevant_users))\n",
" result.append(('HR', HR/relevant_users))\n",
"\n",
" df_result=(pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns=list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 3056.45it/s]\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.09141 | \n",
" 0.037652 | \n",
" 0.04603 | \n",
" 0.061286 | \n",
" 0.079614 | \n",
" 0.056463 | \n",
" 0.095957 | \n",
" 0.043178 | \n",
" 0.198193 | \n",
" 0.515501 | \n",
" 0.437964 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" precision recall F_1 F_05 precision_super recall_super \\\n",
"0 0.09141 0.037652 0.04603 0.061286 0.079614 0.056463 \n",
"\n",
" NDCG mAP MRR LAUC HR \n",
"0 0.095957 0.043178 0.198193 0.515501 0.437964 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ranking_metrics(test_ui, reco, super_reactions=[4,5], topK=10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Diversity metrics"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def diversity_metrics(test_ui, reco, topK=10):\n",
" \n",
" frequencies=defaultdict(int)\n",
" \n",
" # let's assign 0 to all items in test set\n",
" for item in list(set(test_ui.indices)):\n",
" frequencies[item]=0\n",
" \n",
" # counting frequencies\n",
" for item in reco[:,1:].flat:\n",
" frequencies[item]+=1\n",
" \n",
" nb_reco_outside_test=frequencies[-1]\n",
" del frequencies[-1]\n",
" \n",
" frequencies=np.array(list(frequencies.values()))\n",
" \n",
" nb_rec_items=len(frequencies[frequencies>0])\n",
" nb_reco_inside_test=np.sum(frequencies)\n",
" \n",
" frequencies=frequencies/np.sum(frequencies)\n",
" frequencies=np.sort(frequencies)\n",
" \n",
" with np.errstate(divide='ignore'): # let's put zeros put items with 0 frequency and ignore division warning\n",
" log_frequencies=np.nan_to_num(np.log(frequencies), posinf=0, neginf=0)\n",
" \n",
" result=[]\n",
" result.append(('Reco in test', nb_reco_inside_test/(nb_reco_inside_test+nb_reco_outside_test)))\n",
" result.append(('Test coverage', nb_rec_items/test_ui.shape[1]))\n",
" result.append(('Shannon', -np.dot(frequencies, log_frequencies)))\n",
" result.append(('Gini', np.dot(frequencies, np.arange(1-len(frequencies), len(frequencies), 2))/(len(frequencies)-1)))\n",
" \n",
" df_result=(pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns=list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1.0 | \n",
" 0.033911 | \n",
" 2.836513 | \n",
" 0.991139 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Reco in test Test coverage Shannon Gini\n",
"0 1.0 0.033911 2.836513 0.991139"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in case of errors try !pip3 install numpy==1.18.4 (or pip if you use python 2) and restart the kernel\n",
"\n",
"import evaluation_measures as ev\n",
"import imp\n",
"imp.reload(ev)\n",
"\n",
"x=diversity_metrics(test_ui, reco, topK=10)\n",
"x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# To be used in other notebooks"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 2872.87it/s]\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.949459 | \n",
" 0.752487 | \n",
" 0.09141 | \n",
" 0.037652 | \n",
" 0.04603 | \n",
" 0.061286 | \n",
" 0.079614 | \n",
" 0.056463 | \n",
" 0.095957 | \n",
" 0.043178 | \n",
" 0.198193 | \n",
" 0.515501 | \n",
" 0.437964 | \n",
" 1.0 | \n",
" 0.033911 | \n",
" 2.836513 | \n",
" 0.991139 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" RMSE MAE precision recall F_1 F_05 \\\n",
"0 0.949459 0.752487 0.09141 0.037652 0.04603 0.061286 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 \n",
"\n",
" HR Reco in test Test coverage Shannon Gini \n",
"0 0.437964 1.0 0.033911 2.836513 0.991139 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import evaluation_measures as ev\n",
"import imp\n",
"imp.reload(ev)\n",
"\n",
"estimations_df=pd.read_csv('Recommendations generated/ml-100k/Ready_Baseline_estimations.csv', header=None)\n",
"reco=np.loadtxt('Recommendations generated/ml-100k/Ready_Baseline_reco.csv', delimiter=',')\n",
"\n",
"ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None),\n",
" estimations_df=estimations_df, \n",
" reco=reco,\n",
" super_reactions=[4,5])\n",
"#also you can just type ev.evaluate_all(estimations_df, reco) - I put above values as default"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 3486.43it/s]\n",
"943it [00:00, 4513.34it/s]\n",
"943it [00:00, 3772.94it/s]\n",
"943it [00:00, 2882.13it/s]\n",
"943it [00:00, 2333.14it/s]\n",
"943it [00:00, 2868.64it/s]\n",
"943it [00:00, 3744.73it/s]\n"
]
}
],
"source": [
"import evaluation_measures as ev\n",
"import imp\n",
"imp.reload(ev)\n",
"\n",
"dir_path=\"Recommendations generated/ml-100k/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"\n",
"df=ev.evaluate_all(test, dir_path, super_reactions)\n",
"#also you can just type ev.evaluate_all() - I put above values as default"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Self_TopPop | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.188865 | \n",
" 0.116919 | \n",
" 0.118732 | \n",
" 0.141584 | \n",
" 0.130472 | \n",
" 0.137473 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Baseline | \n",
" 0.949459 | \n",
" 0.752487 | \n",
" 0.091410 | \n",
" 0.037652 | \n",
" 0.046030 | \n",
" 0.061286 | \n",
" 0.079614 | \n",
" 0.056463 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_GlobalAvg | \n",
" 1.125760 | \n",
" 0.943534 | \n",
" 0.061188 | \n",
" 0.025968 | \n",
" 0.031383 | \n",
" 0.041343 | \n",
" 0.040558 | \n",
" 0.032107 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Random | \n",
" 1.517593 | \n",
" 1.220181 | \n",
" 0.046023 | \n",
" 0.019038 | \n",
" 0.023118 | \n",
" 0.030734 | \n",
" 0.029292 | \n",
" 0.021639 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopRated | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.000954 | \n",
" 0.000188 | \n",
" 0.000298 | \n",
" 0.000481 | \n",
" 0.000644 | \n",
" 0.000223 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineIU | \n",
" 0.958136 | \n",
" 0.754051 | \n",
" 0.000954 | \n",
" 0.000188 | \n",
" 0.000298 | \n",
" 0.000481 | \n",
" 0.000644 | \n",
" 0.000223 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineUI | \n",
" 0.967585 | \n",
" 0.762740 | \n",
" 0.000954 | \n",
" 0.000170 | \n",
" 0.000278 | \n",
" 0.000463 | \n",
" 0.000644 | \n",
" 0.000189 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n",
"0 Ready_Random 1.517593 1.220181 0.046023 0.019038 0.023118 \n",
"0 Self_TopRated 2.508258 2.217909 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineIU 0.958136 0.754051 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"\n",
" F_05 precision_super recall_super \n",
"0 0.141584 0.130472 0.137473 \n",
"0 0.061286 0.079614 0.056463 \n",
"0 0.041343 0.040558 0.032107 \n",
"0 0.030734 0.029292 0.021639 \n",
"0 0.000481 0.000644 0.000223 \n",
"0 0.000481 0.000644 0.000223 \n",
"0 0.000463 0.000644 0.000189 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:,:9]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Self_TopPop | \n",
" 0.214651 | \n",
" 0.111707 | \n",
" 0.400939 | \n",
" 0.555546 | \n",
" 0.765642 | \n",
" 1.000000 | \n",
" 0.038961 | \n",
" 3.159079 | \n",
" 0.987317 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Baseline | \n",
" 0.095957 | \n",
" 0.043178 | \n",
" 0.198193 | \n",
" 0.515501 | \n",
" 0.437964 | \n",
" 1.000000 | \n",
" 0.033911 | \n",
" 2.836513 | \n",
" 0.991139 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_GlobalAvg | \n",
" 0.067695 | \n",
" 0.027470 | \n",
" 0.171187 | \n",
" 0.509546 | \n",
" 0.384942 | \n",
" 1.000000 | \n",
" 0.025974 | \n",
" 2.711772 | \n",
" 0.992003 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Random | \n",
" 0.050818 | \n",
" 0.019958 | \n",
" 0.126646 | \n",
" 0.506031 | \n",
" 0.305408 | \n",
" 0.988547 | \n",
" 0.174603 | \n",
" 5.082383 | \n",
" 0.908434 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopRated | \n",
" 0.001043 | \n",
" 0.000335 | \n",
" 0.003348 | \n",
" 0.496433 | \n",
" 0.009544 | \n",
" 0.699046 | \n",
" 0.005051 | \n",
" 1.945910 | \n",
" 0.995669 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineIU | \n",
" 0.001043 | \n",
" 0.000335 | \n",
" 0.003348 | \n",
" 0.496433 | \n",
" 0.009544 | \n",
" 0.699046 | \n",
" 0.005051 | \n",
" 1.945910 | \n",
" 0.995669 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineUI | \n",
" 0.000752 | \n",
" 0.000168 | \n",
" 0.001677 | \n",
" 0.496424 | \n",
" 0.009544 | \n",
" 0.600530 | \n",
" 0.005051 | \n",
" 1.803126 | \n",
" 0.996380 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model NDCG mAP MRR LAUC HR \\\n",
"0 Self_TopPop 0.214651 0.111707 0.400939 0.555546 0.765642 \n",
"0 Ready_Baseline 0.095957 0.043178 0.198193 0.515501 0.437964 \n",
"0 Self_GlobalAvg 0.067695 0.027470 0.171187 0.509546 0.384942 \n",
"0 Ready_Random 0.050818 0.019958 0.126646 0.506031 0.305408 \n",
"0 Self_TopRated 0.001043 0.000335 0.003348 0.496433 0.009544 \n",
"0 Self_BaselineIU 0.001043 0.000335 0.003348 0.496433 0.009544 \n",
"0 Self_BaselineUI 0.000752 0.000168 0.001677 0.496424 0.009544 \n",
"\n",
" Reco in test Test coverage Shannon Gini \n",
"0 1.000000 0.038961 3.159079 0.987317 \n",
"0 1.000000 0.033911 2.836513 0.991139 \n",
"0 1.000000 0.025974 2.711772 0.992003 \n",
"0 0.988547 0.174603 5.082383 0.908434 \n",
"0 0.699046 0.005051 1.945910 0.995669 \n",
"0 0.699046 0.005051 1.945910 0.995669 \n",
"0 0.600530 0.005051 1.803126 0.996380 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:,np.append(0,np.arange(9, df.shape[1]))]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check metrics on toy dataset"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"3it [00:00, 3003.08it/s]\n",
"3it [00:00, 1975.65it/s]\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" HR2 | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Self_BaselineUI | \n",
" 1.612452 | \n",
" 1.400 | \n",
" 0.444444 | \n",
" 0.888889 | \n",
" 0.555556 | \n",
" 0.478632 | \n",
" 0.333333 | \n",
" 0.75 | \n",
" 0.676907 | \n",
" 0.574074 | \n",
" 0.611111 | \n",
" 0.638889 | \n",
" 1.0 | \n",
" 0.333333 | \n",
" 0.888889 | \n",
" 0.8 | \n",
" 1.386294 | \n",
" 0.250000 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineIU | \n",
" 1.648337 | \n",
" 1.575 | \n",
" 0.444444 | \n",
" 0.888889 | \n",
" 0.555556 | \n",
" 0.478632 | \n",
" 0.333333 | \n",
" 0.75 | \n",
" 0.720550 | \n",
" 0.629630 | \n",
" 0.666667 | \n",
" 0.722222 | \n",
" 1.0 | \n",
" 0.333333 | \n",
" 0.777778 | \n",
" 0.8 | \n",
" 1.351784 | \n",
" 0.357143 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 F_05 \\\n",
"0 Self_BaselineUI 1.612452 1.400 0.444444 0.888889 0.555556 0.478632 \n",
"0 Self_BaselineIU 1.648337 1.575 0.444444 0.888889 0.555556 0.478632 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC HR \\\n",
"0 0.333333 0.75 0.676907 0.574074 0.611111 0.638889 1.0 \n",
"0 0.333333 0.75 0.720550 0.629630 0.666667 0.722222 1.0 \n",
"\n",
" HR2 Reco in test Test coverage Shannon Gini \n",
"0 0.333333 0.888889 0.8 1.386294 0.250000 \n",
"0 0.333333 0.777778 0.8 1.351784 0.357143 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training data:\n"
]
},
{
"data": {
"text/plain": [
"matrix([[3, 4, 0, 0, 5, 0, 0, 4],\n",
" [0, 1, 2, 3, 0, 0, 0, 0],\n",
" [0, 0, 0, 5, 0, 3, 4, 0]], dtype=int64)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test data:\n"
]
},
{
"data": {
"text/plain": [
"matrix([[0, 0, 0, 0, 0, 0, 3, 0],\n",
" [0, 0, 0, 0, 5, 0, 0, 0],\n",
" [5, 0, 4, 0, 0, 0, 0, 2]], dtype=int64)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recommendations:\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 30 | \n",
" 5.0 | \n",
" 20 | \n",
" 4.0 | \n",
" 60 | \n",
" 4.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 10 | \n",
" 40 | \n",
" 3.0 | \n",
" 60 | \n",
" 2.0 | \n",
" 70 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 20 | \n",
" 40 | \n",
" 5.0 | \n",
" 20 | \n",
" 4.0 | \n",
" 70 | \n",
" 4.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5 6\n",
"0 0 30 5.0 20 4.0 60 4.0\n",
"1 10 40 3.0 60 2.0 70 2.0\n",
"2 20 40 5.0 20 4.0 70 4.0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimations:\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" user | \n",
" item | \n",
" est_score | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 60 | \n",
" 4.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 10 | \n",
" 40 | \n",
" 3.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 20 | \n",
" 0 | \n",
" 3.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 20 | \n",
" 20 | \n",
" 4.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 20 | \n",
" 70 | \n",
" 4.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" user item est_score\n",
"0 0 60 4.0\n",
"1 10 40 3.0\n",
"2 20 0 3.0\n",
"3 20 20 4.0\n",
"4 20 70 4.0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import evaluation_measures as ev\n",
"import imp\n",
"import helpers\n",
"imp.reload(ev)\n",
"\n",
"dir_path=\"Recommendations generated/toy-example/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None)\n",
"\n",
"display(ev.evaluate_all(test, dir_path, super_reactions, topK=3))\n",
"#also you can just type ev.evaluate_all() - I put above values as default\n",
"\n",
"toy_train_read=pd.read_csv('./Datasets/toy-example/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"toy_test_read=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"reco=pd.read_csv('Recommendations generated/toy-example/Self_BaselineUI_reco.csv', header=None)\n",
"estimations=pd.read_csv('Recommendations generated/toy-example/Self_BaselineUI_estimations.csv', names=['user', 'item', 'est_score'])\n",
"toy_train_ui, toy_test_ui, toy_user_code_id, toy_user_id_code, \\\n",
"toy_item_code_id, toy_item_id_code = helpers.data_to_csr(toy_train_read, toy_test_read)\n",
"\n",
"print('Training data:')\n",
"display(toy_train_ui.todense())\n",
"\n",
"print('Test data:')\n",
"display(toy_test_ui.todense())\n",
"\n",
"print('Recommendations:')\n",
"display(reco)\n",
"\n",
"print('Estimations:')\n",
"display(estimations)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sample recommendations"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here is what user rated high:\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" user | \n",
" rating | \n",
" title | \n",
" genres | \n",
"
\n",
" \n",
" \n",
" \n",
" 404 | \n",
" 395 | \n",
" 5 | \n",
" Toy Story (1995) | \n",
" Animation, Children's, Comedy | \n",
"
\n",
" \n",
" 14150 | \n",
" 395 | \n",
" 5 | \n",
" Powder (1995) | \n",
" Drama | \n",
"
\n",
" \n",
" 64079 | \n",
" 395 | \n",
" 5 | \n",
" Alien: Resurrection (1997) | \n",
" Action, Horror, Sci-Fi | \n",
"
\n",
" \n",
" 43644 | \n",
" 395 | \n",
" 5 | \n",
" Amistad (1997) | \n",
" Drama | \n",
"
\n",
" \n",
" 40896 | \n",
" 395 | \n",
" 5 | \n",
" Miracle on 34th Street (1994) | \n",
" Drama | \n",
"
\n",
" \n",
" 36088 | \n",
" 395 | \n",
" 5 | \n",
" Silence of the Lambs, The (1991) | \n",
" Drama, Thriller | \n",
"
\n",
" \n",
" 31848 | \n",
" 395 | \n",
" 5 | \n",
" Shawshank Redemption, The (1994) | \n",
" Drama | \n",
"
\n",
" \n",
" 27211 | \n",
" 395 | \n",
" 5 | \n",
" Empire Strikes Back, The (1980) | \n",
" Action, Adventure, Drama, Romance, Sci-Fi, War | \n",
"
\n",
" \n",
" 21870 | \n",
" 395 | \n",
" 5 | \n",
" Men in Black (1997) | \n",
" Action, Adventure, Comedy, Sci-Fi | \n",
"
\n",
" \n",
" 20257 | \n",
" 395 | \n",
" 5 | \n",
" Return of the Jedi (1983) | \n",
" Action, Adventure, Romance, Sci-Fi, War | \n",
"
\n",
" \n",
" 16682 | \n",
" 395 | \n",
" 5 | \n",
" Blues Brothers, The (1980) | \n",
" Action, Comedy, Musical | \n",
"
\n",
" \n",
" 15962 | \n",
" 395 | \n",
" 5 | \n",
" Godfather, The (1972) | \n",
" Action, Crime, Drama | \n",
"
\n",
" \n",
" 15416 | \n",
" 395 | \n",
" 5 | \n",
" Blade Runner (1982) | \n",
" Film-Noir, Sci-Fi | \n",
"
\n",
" \n",
" 15047 | \n",
" 395 | \n",
" 5 | \n",
" Indiana Jones and the Last Crusade (1989) | \n",
" Action, Adventure | \n",
"
\n",
" \n",
" 23025 | \n",
" 395 | \n",
" 5 | \n",
" Apt Pupil (1998) | \n",
" Drama, Thriller | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" user rating title \\\n",
"404 395 5 Toy Story (1995) \n",
"14150 395 5 Powder (1995) \n",
"64079 395 5 Alien: Resurrection (1997) \n",
"43644 395 5 Amistad (1997) \n",
"40896 395 5 Miracle on 34th Street (1994) \n",
"36088 395 5 Silence of the Lambs, The (1991) \n",
"31848 395 5 Shawshank Redemption, The (1994) \n",
"27211 395 5 Empire Strikes Back, The (1980) \n",
"21870 395 5 Men in Black (1997) \n",
"20257 395 5 Return of the Jedi (1983) \n",
"16682 395 5 Blues Brothers, The (1980) \n",
"15962 395 5 Godfather, The (1972) \n",
"15416 395 5 Blade Runner (1982) \n",
"15047 395 5 Indiana Jones and the Last Crusade (1989) \n",
"23025 395 5 Apt Pupil (1998) \n",
"\n",
" genres \n",
"404 Animation, Children's, Comedy \n",
"14150 Drama \n",
"64079 Action, Horror, Sci-Fi \n",
"43644 Drama \n",
"40896 Drama \n",
"36088 Drama, Thriller \n",
"31848 Drama \n",
"27211 Action, Adventure, Drama, Romance, Sci-Fi, War \n",
"21870 Action, Adventure, Comedy, Sci-Fi \n",
"20257 Action, Adventure, Romance, Sci-Fi, War \n",
"16682 Action, Comedy, Musical \n",
"15962 Action, Crime, Drama \n",
"15416 Film-Noir, Sci-Fi \n",
"15047 Action, Adventure \n",
"23025 Drama, Thriller "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here is what we recommend:\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" user | \n",
" rec_nb | \n",
" title | \n",
" genres | \n",
"
\n",
" \n",
" \n",
" \n",
" 393 | \n",
" 395.0 | \n",
" 1 | \n",
" Great Day in Harlem, A (1994) | \n",
" Documentary | \n",
"
\n",
" \n",
" 1335 | \n",
" 395.0 | \n",
" 2 | \n",
" Tough and Deadly (1995) | \n",
" Action, Drama, Thriller | \n",
"
\n",
" \n",
" 2277 | \n",
" 395.0 | \n",
" 3 | \n",
" Aiqing wansui (1994) | \n",
" Drama | \n",
"
\n",
" \n",
" 3219 | \n",
" 395.0 | \n",
" 4 | \n",
" Delta of Venus (1994) | \n",
" Drama | \n",
"
\n",
" \n",
" 4162 | \n",
" 395.0 | \n",
" 5 | \n",
" Someone Else's America (1995) | \n",
" Drama | \n",
"
\n",
" \n",
" 5103 | \n",
" 395.0 | \n",
" 6 | \n",
" Saint of Fort Washington, The (1993) | \n",
" Drama | \n",
"
\n",
" \n",
" 6045 | \n",
" 395.0 | \n",
" 7 | \n",
" Celestial Clockwork (1994) | \n",
" Comedy | \n",
"
\n",
" \n",
" 6988 | \n",
" 395.0 | \n",
" 8 | \n",
" Some Mother's Son (1996) | \n",
" Drama | \n",
"
\n",
" \n",
" 8882 | \n",
" 395.0 | \n",
" 9 | \n",
" Maya Lin: A Strong Clear Vision (1994) | \n",
" Documentary | \n",
"
\n",
" \n",
" 7928 | \n",
" 395.0 | \n",
" 10 | \n",
" Prefontaine (1997) | \n",
" Drama | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" user rec_nb title \\\n",
"393 395.0 1 Great Day in Harlem, A (1994) \n",
"1335 395.0 2 Tough and Deadly (1995) \n",
"2277 395.0 3 Aiqing wansui (1994) \n",
"3219 395.0 4 Delta of Venus (1994) \n",
"4162 395.0 5 Someone Else's America (1995) \n",
"5103 395.0 6 Saint of Fort Washington, The (1993) \n",
"6045 395.0 7 Celestial Clockwork (1994) \n",
"6988 395.0 8 Some Mother's Son (1996) \n",
"8882 395.0 9 Maya Lin: A Strong Clear Vision (1994) \n",
"7928 395.0 10 Prefontaine (1997) \n",
"\n",
" genres \n",
"393 Documentary \n",
"1335 Action, Drama, Thriller \n",
"2277 Drama \n",
"3219 Drama \n",
"4162 Drama \n",
"5103 Drama \n",
"6045 Comedy \n",
"6988 Drama \n",
"8882 Documentary \n",
"7928 Drama "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"items=pd.read_csv('./Datasets/ml-100k/movies.csv')\n",
"\n",
"user=random.choice(list(set(train['user'])))\n",
"\n",
"train_content=pd.merge(train, items, left_on='item', right_on='id')\n",
"\n",
"print('Here is what user rated high:')\n",
"display(train_content[train_content['user']==user][['user', 'rating', 'title', 'genres']]\\\n",
" .sort_values(by='rating', ascending=False)[:15])\n",
"\n",
"reco = np.loadtxt('Recommendations generated/ml-100k/Self_BaselineUI_reco.csv', delimiter=',')\n",
"items=pd.read_csv('./Datasets/ml-100k/movies.csv')\n",
"\n",
"# Let's ignore scores - they are not used in evaluation: \n",
"reco_users=reco[:,:1]\n",
"reco_items=reco[:,1::2]\n",
"# Let's put them into one array\n",
"reco=np.concatenate((reco_users, reco_items), axis=1)\n",
"\n",
"# Let's rebuild it user-item dataframe\n",
"recommended=[]\n",
"for row in reco:\n",
" for rec_nb, entry in enumerate(row[1:]):\n",
" recommended.append((row[0], rec_nb+1, entry))\n",
"recommended=pd.DataFrame(recommended, columns=['user','rec_nb', 'item'])\n",
"\n",
"recommended_content=pd.merge(recommended, items, left_on='item', right_on='id')\n",
"\n",
"print('Here is what we recommend:')\n",
"recommended_content[recommended_content['user']==user][['user', 'rec_nb', 'title', 'genres']].sort_values(by='rec_nb')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# project task 3: implement some other evaluation measure"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# it may be your idea, modification of what we have already implemented \n",
"# (for example Hit2 rate which would count as a success users whoreceived at least 2 relevant recommendations) \n",
"# or something well-known\n",
"# expected output: modification of evaluation_measures.py such that evaluate_all will also display your measure"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 6823.12it/s]\n",
"943it [00:00, 7031.46it/s]\n",
"943it [00:00, 6757.46it/s]\n",
"943it [00:00, 4266.43it/s]\n",
"943it [00:00, 6333.51it/s]\n",
"943it [00:00, 7252.84it/s]\n",
"943it [00:00, 5832.99it/s]\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" HR2 | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Self_TopPop | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.188865 | \n",
" 0.116919 | \n",
" 0.118732 | \n",
" 0.141584 | \n",
" 0.130472 | \n",
" 0.137473 | \n",
" 0.214651 | \n",
" 0.111707 | \n",
" 0.400939 | \n",
" 0.555546 | \n",
" 0.765642 | \n",
" 0.492047 | \n",
" 1.000000 | \n",
" 0.038961 | \n",
" 3.159079 | \n",
" 0.987317 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Baseline | \n",
" 0.949459 | \n",
" 0.752487 | \n",
" 0.091410 | \n",
" 0.037652 | \n",
" 0.046030 | \n",
" 0.061286 | \n",
" 0.079614 | \n",
" 0.056463 | \n",
" 0.095957 | \n",
" 0.043178 | \n",
" 0.198193 | \n",
" 0.515501 | \n",
" 0.437964 | \n",
" 0.239661 | \n",
" 1.000000 | \n",
" 0.033911 | \n",
" 2.836513 | \n",
" 0.991139 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_GlobalAvg | \n",
" 1.125760 | \n",
" 0.943534 | \n",
" 0.061188 | \n",
" 0.025968 | \n",
" 0.031383 | \n",
" 0.041343 | \n",
" 0.040558 | \n",
" 0.032107 | \n",
" 0.067695 | \n",
" 0.027470 | \n",
" 0.171187 | \n",
" 0.509546 | \n",
" 0.384942 | \n",
" 0.142100 | \n",
" 1.000000 | \n",
" 0.025974 | \n",
" 2.711772 | \n",
" 0.992003 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Random | \n",
" 1.517593 | \n",
" 1.220181 | \n",
" 0.046023 | \n",
" 0.019038 | \n",
" 0.023118 | \n",
" 0.030734 | \n",
" 0.029292 | \n",
" 0.021639 | \n",
" 0.050818 | \n",
" 0.019958 | \n",
" 0.126646 | \n",
" 0.506031 | \n",
" 0.305408 | \n",
" 0.111347 | \n",
" 0.988547 | \n",
" 0.174603 | \n",
" 5.082383 | \n",
" 0.908434 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopRated | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.000954 | \n",
" 0.000188 | \n",
" 0.000298 | \n",
" 0.000481 | \n",
" 0.000644 | \n",
" 0.000223 | \n",
" 0.001043 | \n",
" 0.000335 | \n",
" 0.003348 | \n",
" 0.496433 | \n",
" 0.009544 | \n",
" 0.000000 | \n",
" 0.699046 | \n",
" 0.005051 | \n",
" 1.945910 | \n",
" 0.995669 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineIU | \n",
" 0.958136 | \n",
" 0.754051 | \n",
" 0.000954 | \n",
" 0.000188 | \n",
" 0.000298 | \n",
" 0.000481 | \n",
" 0.000644 | \n",
" 0.000223 | \n",
" 0.001043 | \n",
" 0.000335 | \n",
" 0.003348 | \n",
" 0.496433 | \n",
" 0.009544 | \n",
" 0.000000 | \n",
" 0.699046 | \n",
" 0.005051 | \n",
" 1.945910 | \n",
" 0.995669 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineUI | \n",
" 0.967585 | \n",
" 0.762740 | \n",
" 0.000954 | \n",
" 0.000170 | \n",
" 0.000278 | \n",
" 0.000463 | \n",
" 0.000644 | \n",
" 0.000189 | \n",
" 0.000752 | \n",
" 0.000168 | \n",
" 0.001677 | \n",
" 0.496424 | \n",
" 0.009544 | \n",
" 0.000000 | \n",
" 0.600530 | \n",
" 0.005051 | \n",
" 1.803126 | \n",
" 0.996380 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n",
"0 Ready_Random 1.517593 1.220181 0.046023 0.019038 0.023118 \n",
"0 Self_TopRated 2.508258 2.217909 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineIU 0.958136 0.754051 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"\n",
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n",
"0 0.030734 0.029292 0.021639 0.050818 0.019958 0.126646 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"\n",
" LAUC HR HR2 Reco in test Test coverage Shannon \\\n",
"0 0.555546 0.765642 0.492047 1.000000 0.038961 3.159079 \n",
"0 0.515501 0.437964 0.239661 1.000000 0.033911 2.836513 \n",
"0 0.509546 0.384942 0.142100 1.000000 0.025974 2.711772 \n",
"0 0.506031 0.305408 0.111347 0.988547 0.174603 5.082383 \n",
"0 0.496433 0.009544 0.000000 0.699046 0.005051 1.945910 \n",
"0 0.496433 0.009544 0.000000 0.699046 0.005051 1.945910 \n",
"0 0.496424 0.009544 0.000000 0.600530 0.005051 1.803126 \n",
"\n",
" Gini \n",
"0 0.987317 \n",
"0 0.991139 \n",
"0 0.992003 \n",
"0 0.908434 \n",
"0 0.995669 \n",
"0 0.995669 \n",
"0 0.996380 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir_path=\"Recommendations generated/ml-100k/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}