#!/usr/bin/env python # coding: utf-8 from sklearn.linear_model import LinearRegression import pandas as pd import string import csv price = [] mileage = [] year = [] brand = [] enginetype = [] enginecapacity = [] with open("train/train.tsv") as tsv: for line in csv.reader(tsv, delimiter="\t"): price.append(line[0]) mileage.append(line[1]) year.append(line[2]) brand.append(line[3]) enginetype.append(line[4]) enginecapacity.append(line[5]) cena = pd.DataFrame(list(zip(price))) reszta = pd.DataFrame(list(zip(mileage,year,enginecapacity))) model = LinearRegression().fit(reszta,cena) out1 = open("dev-0/out.tsv", "w") mileage_dev = [] year_dev = [] brand_dev = [] enginetype_dev = [] enginecapacity_dev = [] with open("dev-0/in.tsv") as tsv: for line in csv.reader(tsv, delimiter="\t"): mileage_dev.append(line[0]) year_dev.append(line[1]) brand_dev.append(line[2]) enginetype_dev.append(line[3]) enginecapacity_dev.append(line[4]) do_predykcji1 = pd.DataFrame(list(zip(mileage_dev,year_dev,enginecapacity_dev))) predict1 = model.predict(do_predykcji1) for x in predict1: new1 = str(x).replace('[','') new1 = str(new1).replace(']','') out1.write(str(new1) + '\n') out1.close() out2 = open("test-A/out.tsv", "w") mileage_test = [] year_test = [] brand_test = [] enginetype_test = [] enginecapacity_test = [] with open("test-A/in.tsv") as tsv: for line in csv.reader(tsv, delimiter="\t"): mileage_test.append(line[0]) year_test.append(line[1]) brand_test.append(line[2]) enginetype_test.append(line[3]) enginecapacity_test.append(line[4]) do_predykcji2 = pd.DataFrame(list(zip(mileage_test,year_test,enginecapacity_test))) predict2 = model.predict(do_predykcji2) for y in predict2: new2 = str(y).replace('[','') new2 = str(new2).replace(']','') out2.write(str(new2) + '\n') out2.close()