1
0
forked from tdwojak/Python2018
Python2018/labs06/homework.py
2018-06-20 19:44:03 +02:00

69 lines
1.8 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import sys
import numpy as np
def wczytaj_dane():
my_data = pd.read_csv('mieszkania.csv',
encoding='utf-8',
index_col='Id',
sep = ',')
return my_data
def most_common_room_number(dane):
rooms = dane['Rooms']
return rooms.value_counts().index[0]
def cheapest_flats(dane, n):
dane2 = dane.sort_values(by=['Expected'])
return(dane2.head(n))
def find_borough(desc):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec']
for dzielnia in dzielnice:
if dzielnia in desc:
return dzielnia
return 'Inne'
def add_borough(dane):
dane['Borough'] = dane.apply(lambda row: find_borough(row['Location']))
def write_plot(dane, filename):
dane['Borough'].value_counts().plot.bar().get_figure().savefig(filename)
def mean_price(dane, room_number):
mean_value = dane.loc[dane['Rooms'] == room_number]['Expected'].mean()
return mean_value
def find_13(dane):
return dane.loc[dane['Floor'] == 13]['Borough'].unique()
def find_best_flats(dane):
best_flats = dane.loc[(df['Borough'] == 'Winogrady') & (dane['Rooms'] == 3) & (dane['Floor'] == 1)]
return best_flats
def main():
dane = wczytaj_dane()
print(dane[:5])
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
.format(most_common_room_number(dane)))
print("{} to najłądniejsza dzielnica w Poznaniu."
.format(find_borough("Grunwald i Jeżyce")))
print("Średnia cena mieszkania 3-pokojowego, to: {}"
.format(mean_price(dane, 3)))
if __name__ == "__main__":
main()