forked from tdwojak/Python2018
rozwiazanie labs06
This commit is contained in:
parent
c547ed0502
commit
aaa6fd05a5
@ -7,7 +7,7 @@ przez 3 lub 5 mniejszych niż n.
|
||||
"""
|
||||
|
||||
def sum_div35(n):
|
||||
pass
|
||||
|
||||
|
||||
def tests(f):
|
||||
inputs = [[10], [100], [3845]]
|
||||
|
45
labs06/tasks.py
Executable file → Normal file
45
labs06/tasks.py
Executable file → Normal file
@ -4,77 +4,92 @@
|
||||
"""
|
||||
1. Zaimportuj bibliotkę pandas jako pd.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
"""
|
||||
2. Wczytaj zbiór danych `311.csv` do zniennej data.
|
||||
"""
|
||||
|
||||
data=pd.read_csv("/home/students/s407545/PycharmProjects/Python2018/labs06/311.csv", low_memory=False)
|
||||
|
||||
"""
|
||||
3. Wyświetl 5 pierwszych wierszy z data.
|
||||
"""
|
||||
|
||||
data.head()
|
||||
|
||||
"""
|
||||
4. Wyświetl nazwy kolumn.
|
||||
"""
|
||||
|
||||
print(data.columns)
|
||||
|
||||
"""
|
||||
5. Wyświetl ile nasz zbiór danych ma kolumn i wierszy.
|
||||
"""
|
||||
|
||||
shape= data.shape
|
||||
print(shape)
|
||||
|
||||
"""
|
||||
6. Wyświetl kolumnę 'City' z powyższego zbioru danych.
|
||||
"""
|
||||
|
||||
print(data['City'])
|
||||
|
||||
"""
|
||||
7. Wyświetl jakie wartoścu przyjmuje kolumna 'City'.
|
||||
"""
|
||||
|
||||
data.City.unique()
|
||||
"""
|
||||
8. Wyświetl tabelę rozstawną kolumny City.
|
||||
"""
|
||||
|
||||
data.City.value_counts()
|
||||
|
||||
"""
|
||||
9. Wyświetl tylko pierwsze 4 wiersze z wcześniejszego polecenia.
|
||||
"""
|
||||
|
||||
data.City.value_counts().head(4)
|
||||
|
||||
"""
|
||||
10. Wyświetl, w ilu przypadkach kolumna City zawiera NaN.
|
||||
"""
|
||||
|
||||
x= data['City'].isnull().sum()
|
||||
|
||||
x= data[data['City']=='NYPD']
|
||||
shape=x.shape
|
||||
rows= shape[0]
|
||||
print(rows)
|
||||
|
||||
"""
|
||||
11. Wyświetl data.info()
|
||||
"""
|
||||
|
||||
data.info()
|
||||
"""
|
||||
12. Wyświetl tylko kolumny Borough i Agency i tylko 5 ostatnich linii.
|
||||
"""
|
||||
|
||||
print(data[['Borough', 'Agency']].tail())
|
||||
|
||||
"""
|
||||
13. Wyświetl tylko te dane, dla których wartość z kolumny Agency jest równa
|
||||
NYPD. Zlicz ile jest takich przykładów.
|
||||
"""
|
||||
|
||||
y= data[data['Agency']=='NYPD']
|
||||
shape=y.shape
|
||||
rows= shape[0]
|
||||
print(rows)
|
||||
"""
|
||||
14. Wyświetl wartość minimalną i maksymalną z kolumny Longitude.
|
||||
"""
|
||||
|
||||
x=data['Longitude']
|
||||
x.min()
|
||||
x.max()
|
||||
"""
|
||||
15. Dodaj kolumne diff, która powstanie przez sumowanie kolumn Longitude i Latitude.
|
||||
"""
|
||||
|
||||
|
||||
x=data['Longitude']
|
||||
y=data['Latitude']
|
||||
data['diff']= x+y
|
||||
print(data.columns)
|
||||
"""
|
||||
16. Wyświetl tablę rozstawną dla kolumny 'Descriptor', dla której Agency jest
|
||||
równe NYPD.
|
||||
"""
|
||||
y= data[data['Agency']=='NYPD']
|
||||
y.Descriptor.value_counts()
|
Loading…
Reference in New Issue
Block a user