paranormal-or-skeptic-ISI-p.../run.ipynb

135 lines
3.0 KiB
Plaintext
Raw Normal View History

2022-05-08 15:06:12 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [
"#!/usr/bin/env python\n",
"# coding: utf-8\n",
"\n",
"from sklearn.naive_bayes import MultinomialNB\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.feature_extraction.text import CountVectorizer\n",
"import lzma\n",
"\n",
"X_train = lzma.open(\"train/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
"y_train = open('train/expected.tsv').readlines()\n",
"X_dev0 = lzma.open(\"dev-0/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
"y_expected_dev0 = open(\"dev-0/expected.tsv\", \"r\").readlines()\n",
"X_test = lzma.open(\"test-A/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [],
"source": [
"count_vect = CountVectorizer()\n",
"X_train_counts = count_vect.fit_transform(X_train)\n",
"X_dev0_counts = count_vect.transform(X_dev0)\n",
"X_test_counts = count_vect.transform(X_test)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [],
"source": [
"clf = MultinomialNB().fit(X_train_counts, y_train)\n",
"\n",
"y_predicted_dev0_MNB = clf.predict(X_dev0_counts)\n",
"y_predicted_test_MNB = clf.predict(X_test_counts)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy dev0: 0.8025417298937785\n"
]
}
],
"source": [
"accuracy_dev0_MNB = accuracy_score(y_expected_dev0, y_predicted_dev0_MNB)\n",
"print(f\"Accuracy dev0: {accuracy_dev0_MNB}\")\n"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [],
"source": [
"open(\"dev-0/out.tsv\", mode='w').writelines(y_predicted_dev0_MNB)\n",
"open(\"test-A/out.tsv\", mode='w').writelines(y_predicted_test_MNB)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}