1
0
forked from tdwojak/Python2018
Python2018/labs06/task02.py

95 lines
2.5 KiB
Python
Raw Normal View History

2018-06-03 10:04:16 +02:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
2018-06-06 16:41:25 +02:00
import pandas as pd
from matplotlib import pyplot as plt
from sklearn import linear_model
2018-06-03 10:04:16 +02:00
def wczytaj_dane():
2018-06-06 16:41:25 +02:00
data = pd.read_csv("J:/PycharmProjects/Python2018/labs06/mieszkania.csv")
return pd.DataFrame(data)
2018-06-03 10:04:16 +02:00
def most_common_room_number(dane):
2018-06-06 16:41:25 +02:00
dane2 = dane['Rooms'].value_counts().head(1)
pokoje = int(dane2.index[0])
return pokoje
2018-06-03 10:04:16 +02:00
def cheapest_flats(dane, n):
2018-06-06 16:41:25 +02:00
result = dane.sort_values('Expected').head(n)
return result
2018-06-03 10:04:16 +02:00
def find_borough(desc):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec']
2018-06-06 16:41:25 +02:00
for i in range(0,len(dzielnice)):
if dzielnice[i] in desc:
result = dzielnice[i]
break
else:
result = 'Inne'
return result
2018-06-03 10:04:16 +02:00
def add_borough(dane):
2018-06-06 16:41:25 +02:00
dane['Borough'] = dane['Location'].apply(find_borough)
return dane
2018-06-03 10:04:16 +02:00
def write_plot(dane, filename):
2018-06-06 16:41:25 +02:00
dane['Borough'].value_counts().plot(kind='barh')
plt.savefig('J:/PycharmProjects/Python2018/labs06/'+filename)
return 0
2018-06-03 10:04:16 +02:00
def mean_price(dane, room_number):
2018-06-06 16:41:25 +02:00
dane2 = dane[dane.Rooms == room_number]
srednia = round(dane2.Expected.mean(),2)
return srednia
2018-06-03 10:04:16 +02:00
def find_13(dane):
2018-06-06 16:41:25 +02:00
dane2 = dane[dane.Floor == 13]
lista_dzielnic = dane2['Borough'].unique()
return lista_dzielnic
2018-06-03 10:04:16 +02:00
def find_best_flats(dane):
2018-06-06 16:41:25 +02:00
dane2 = dane[(dane['Borough']=='Winogrady') & (dane['Rooms']==3) & (dane['Floor']==1)]
return dane2
def reg_lin(dane, metraz, pokoje):
reg = linear_model.LinearRegression()
reg.fit(dane[['SqrMeters', 'Rooms']], dane['Expected'])
result = reg.predict(pd.DataFrame([(metraz, pokoje)], columns=['var1', 'var2']))
return result
"""
dane = wczytaj_dane()
print(most_common_room_number(dane))
print(cheapest_flats(dane, 2))
print(find_borough('Winogrady i Jeżyce'))
add_borough(dane)
write_plot(dane, 'wykres')
print(mean_price(dane, 3))
print(find_13(dane))
print(find_best_flats(dane).shape[0])
print(reg_lin(dane, 60, 3))
"""
2018-06-03 10:04:16 +02:00
def main():
dane = wczytaj_dane()
print(dane[:5])
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
.format(most_common_room_number(dane)))
print("{} to najłądniejsza dzielnica w Poznaniu."
2018-06-06 16:41:25 +02:00
.format(find_borough("Grunwald i Jeżyce")))
2018-06-03 10:04:16 +02:00
print("Średnia cena mieszkania 3-pokojowego, to: {}"
.format(mean_price(dane, 3)))
if __name__ == "__main__":
main()