LightFM model
BPR function

WARP loss function
Python implementation e OLX GROUP
Python implement
Refer

Robert Kwiecinski

OLX Group and Adam Mickiewicz University

June 5, 2020

o

Uam

ADAM MICKIEWICZ
UNIVERSITY
POZNAN

otivation for using hybrid recommender systems

Problems with collaborative models (e.g. classical Matrix Factorization):
o cold-start problem for users and items,

o ignores user and item features.

ivation for using hybrid recommender systems

Problems with collaborative models (e.g. classical Matrix Factorization):
o cold-start problem for users and items,

o ignores user and item features.

Problems with content based approach:

o hard to catch dependencies which cannot be deduced from content
features (maybe the same people buy bikes and chocolate cakes),

o usually worse recommendations quality.

Motivation for using hybrid recommender systems

Problems with collaborative models (e.g. classical Matrix Factorization):
o cold-start problem for users and items,

o ignores user and item features.

Problems with content based approach:

o hard to catch dependencies which cannot be deduced from content
features (maybe the same people buy bikes and chocolate cakes),

o usually worse recommendations quality.

Hybrid recommender system like LightFM, which utilizes both
collaborative and content data.

FM model

The full description you can read in the original paper [1].
In short words prediction is given by:

Pui:qu‘pi+bu+bi7

where q,, is the user latent vector, p; is the item latent vector b, is the
user bias, b; is the item bias.

Each user latent vector is a (weighted) sum of feature embeddings of
each of his features.

The same rule applies to items and biases.

For example embedding of the item "white rabbit” might be a sum of the
embedding of white and the embedding of rabbit.

ample-number of parameters

For our Movielens dataset we will use the following item features:
o genre (19 possibilities),
o data of release (240 possibilities).
As user features we'll take:
o age (61 possibilities),
o sex (2 possibilities),
o profession (21 possibilities),

o zip-code (795 possibilities).

ple-number of parameters

For our Movielens dataset we will use the following item features:
o genre (19 possibilities),
o data of release (240 possibilities).
As user features we'll take:
o age (61 possibilities),
o sex (2 possibilities),
o profession (21 possibilities),
o zip-code (795 possibilities).
If we take 10 latent factors for each user/item feature our model will
have:

o 10- (19 + 240) = 2590 parameters needed for item latent vectors,
o number of item features (259) parameters for item biases,

0 10- (61 + 2+ 21 4 795) = 8790 parameters needed for user latent
vectors,

o number of user features (879) parameters for user biases.

htFM as a generalization of MF

We can treat as feature being a given user or an item. In this case we
will have:

o number of user features equals number of users,
o number of item features equals number of items.

Then LightFM model (possibly assuming biases equals 0) reduces to MF
model.

Note that we can combine both types of discussed features.

-OPT definition

In the paper BPR: Bayesian Personalized Ranking from Implicit Feedback
[2] novel loss function was introduced. It could be applied for various
existing models, including Matrix Factorization.

Denote by D the set of all triples (u, i, j), where u interacted with 7, but
not interacted with j.

BPR-OPT = Z Ino(Pui — Pu) — A||O]]2,
(u,i,j)eD

where 7,; is estimated by a given model and © represents the parameter
vector.

R-OPT learning

For optimizing BPR-OPT we use the stochastic gradient ascent
algorithm based on bootstrap sampling of training triples.

In simple words:

*]

we choose triple (u,i,j) € D randomly with equal probability for
each triple,

we compute a gradient of BPR-OPT with respect to our model
parameters and update the parameters (gradient ascent),

we repeat these steps until convergence.

-OPT learning

For optimizing BPR-OPT we use the stochastic gradient ascent
algorithm based on bootstrap sampling of training triples.

In simple words:

o we choose triple (u,i,j) € D randomly with equal probability for
each triple,

o we compute a gradient of BPR-OPT with respect to our model
parameters and update the parameters (gradient ascent),

o we repeat these steps until convergence.

In the paper it was shown that optimizing BPR-OPT is similar to
optimizing AUC.

P loss

WARP loss (Weighted Approximately Ranked Pairwise Ranking Loss) is
also designed for ranking optimization by focusing on triples (u, i, f),
where the item / is a positive example for the user u and the item j is a
negative example - for example user u interacted with /, but has not
interacted with j.

The general idea is as follows:
o pick a random pair (u, i) where i is a positive example for u,

o sample negative items as long as score of sampled negative item j
exceeds f;,

o update model parameters based on a loss function

. N /-1
(Pyj — rL,,-)In(| |N

),

where [is a set of all items and N is a number of samples needed to
find j.

P loss

WARP loss (Weighted Approximately Ranked Pairwise Ranking Loss) is
also designed for ranking optimization by focusing on triples (u, i, f),
where the item / is a positive example for the user u and the item j is a
negative example - for example user u interacted with /, but has not
interacted with j.

The general idea is as follows:
o pick a random pair (u, i) where i is a positive example for u,

o sample negative items as long as score of sampled negative item j
exceeds f,;,

o update model parameters based on a loss function

N R /-1
(Pyj — Pui) In(| |

),
where [is a set of all items and N is a number of samples needed to
find j.

Read some details and properties of WARP implementation in LightFM

[3].

hon implementation

To do (especially for absent students):
o Go through - P6. LightFM notebook to:

o check implementation of LightFM model using LightFM library -
especially user and item feature preparations

o compare the results using different loss functions

o observe evaluation measures for LightFM model with different
features

ADAM MICKIEWICZ
e OLX GROUP UNIVERSITY
UAM POZNAN

References

“Metadata embeddings for user and item cold-start
recommendations,”

“Bpr: Bayesian personalized ranking from implicit feedback,”

“Learning-to-rank using the warp loss,”

Robert Kwieciriski

https://github.com/lyst/lightfm/blob/master/examples/movielens/warp_loss.ipynb
https://github.com/lyst/lightfm/blob/master/examples/movielens/warp_loss.ipynb

	LightFM model
	BPR loss function
	WARP loss function
	Python implementation
	Python implementation
	References

