change
This commit is contained in:
parent
023a4e4361
commit
43dbf81d83
66
generate.py
66
generate.py
@ -9,48 +9,50 @@ import numpy as np
|
||||
from model import BERT_Arch
|
||||
from sklearn.metrics import classification_report
|
||||
from sklearn.metrics import accuracy_score
|
||||
from transformers import BertTokenizerFast, BertForSequenceClassification
|
||||
from transformers import Trainer, TrainingArguments
|
||||
|
||||
path = 'saved_weights.pt'
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
device = torch.device("cuda")
|
||||
class Dataset(torch.utils.data.Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
|
||||
bert = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
|
||||
def __getitem__(self, idx):
|
||||
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
|
||||
item["labels"] = torch.tensor([self.labels[idx]])
|
||||
return item
|
||||
|
||||
model = BERT_Arch(bert)
|
||||
model.load_state_dict(torch.load(path))
|
||||
model.to(device)
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
test_data = pd.read_csv("dev-0/in.tsv", sep="\t")
|
||||
test_data.columns = ["text", "d"]
|
||||
device = torch.device('cuda')
|
||||
|
||||
test_target = pd.read_csv("dev-0/expected.tsv", sep="\t")
|
||||
train_texts = \
|
||||
pd.read_csv('train/in.tsv.xz', compression='xz', sep='\t', header=None, error_bad_lines=False, quoting=3)[0].tolist()[:1000]
|
||||
train_labels = pd.read_csv('train/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||
dev_texts = pd.read_csv('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||
dev_labels = pd.read_csv('dev-0/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||
model_name = "bert-base-uncased"
|
||||
|
||||
tokens_train = tokenizer.batch_encode_plus(
|
||||
test_data["text"],
|
||||
max_length = 25,
|
||||
padding='max_length',
|
||||
truncation=True
|
||||
)
|
||||
model = BertForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=len(pd.unique(train_labels))).to(device)
|
||||
max_length = 512
|
||||
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
|
||||
|
||||
test_seq = torch.tensor(tokens_train['input_ids'])
|
||||
test_mask = torch.tensor(tokens_train['attention_mask'])
|
||||
# model.load_pretrained(model_path)
|
||||
# tokenizer.load_pretrainded(model_path)
|
||||
|
||||
#define a batch size
|
||||
batch_size = 32
|
||||
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
|
||||
valid_encodings = tokenizer(dev_texts, truncation=True, padding=True, max_length=max_length)
|
||||
|
||||
# wrap tensors
|
||||
test_data = TensorDataset(test_seq, test_mask)
|
||||
|
||||
# sampler for sampling the data during training
|
||||
test_sampler = RandomSampler(test_data)
|
||||
|
||||
# dataLoader for train set
|
||||
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
|
||||
input_ids = torch.tensor(valid_encodings.data['input_ids'])[:100]
|
||||
attention_mask = torch.tensor(valid_encodings.data['attention_mask'])[:100]
|
||||
|
||||
with torch.no_grad():
|
||||
preds = model(test_seq.to(device), test_mask.to(device))
|
||||
preds = preds.detach().cpu().numpy()
|
||||
preds = model(input_ids.to(device), attention_mask.to(device))
|
||||
preds = preds.logits.detach().cpu().numpy()
|
||||
preds = np.argmax(preds, axis = 1)
|
||||
|
||||
print(classification_report(test_target['0'], preds))
|
||||
print(accuracy_score(test_target['0'], preds))
|
||||
print(preds)
|
||||
print(classification_report(dev_labels, preds))
|
||||
print(accuracy_score(dev_labels, preds))
|
279
main.py
279
main.py
@ -1,215 +1,90 @@
|
||||
import pandas as pd
|
||||
from transformers import BertTokenizer, AdamW, AutoModelForSequenceClassification
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
|
||||
import torch.nn as nn
|
||||
from sklearn.utils.class_weight import compute_class_weight
|
||||
from transformers.file_utils import is_torch_available
|
||||
from transformers import BertTokenizerFast, BertForSequenceClassification
|
||||
from transformers import Trainer, TrainingArguments
|
||||
import numpy as np
|
||||
from model import BERT_Arch
|
||||
|
||||
train_input_path = "train/in.tsv"
|
||||
train_target_path = "train/expected.tsv"
|
||||
|
||||
train_input = pd.read_csv(train_input_path, sep="\t")
|
||||
train_input.columns=["text", "d"]
|
||||
train_target = pd.read_csv(train_target_path, sep="\t")
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
device = torch.device("cuda")
|
||||
import random
|
||||
from sklearn.metrics import accuracy_score
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# seq_len = [len(i.split()) for i in train_input["text"]]
|
||||
class Dataset(torch.utils.data.Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
|
||||
# pd.Series(seq_len).hist(bins = 30)
|
||||
# plt.show()
|
||||
def __getitem__(self, idx):
|
||||
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
|
||||
item["labels"] = torch.tensor([self.labels[idx]])
|
||||
return item
|
||||
|
||||
bert = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
|
||||
tokens_train = tokenizer.batch_encode_plus(
|
||||
train_input["text"],
|
||||
max_length = 25,
|
||||
padding='max_length',
|
||||
truncation=True
|
||||
def set_seed(seed: int):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
if is_torch_available():
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
def compute_metrics(pred):
|
||||
labels = pred.label_ids
|
||||
preds = pred.predictions.argmax(-1)
|
||||
acc = accuracy_score(labels, preds)
|
||||
return {
|
||||
'accuracy': acc,
|
||||
}
|
||||
|
||||
set_seed(1)
|
||||
|
||||
train_texts = \
|
||||
pd.read_csv('train/in.tsv.xz', compression='xz', sep='\t', header=None, error_bad_lines=False, quoting=3)[0].tolist()
|
||||
train_labels = pd.read_csv('train/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()
|
||||
dev_texts = pd.read_csv('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)[0].tolist()
|
||||
dev_labels = pd.read_csv('dev-0/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()
|
||||
# test_texts = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
|
||||
|
||||
model_name = "bert-base-uncased"
|
||||
max_length = 25
|
||||
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
|
||||
|
||||
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
|
||||
valid_encodings = tokenizer(dev_texts, truncation=True, padding=True, max_length=max_length)
|
||||
|
||||
train_dataset = Dataset(train_encodings, train_labels)
|
||||
valid_dataset = Dataset(valid_encodings, dev_labels)
|
||||
|
||||
model = BertForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=len(pd.unique(train_labels))).to("cuda")
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='./results', # output directory
|
||||
num_train_epochs=3, # total number of training epochs
|
||||
per_device_train_batch_size=1, # batch size per device during training
|
||||
per_device_eval_batch_size=1, # batch size for evaluation
|
||||
warmup_steps=500, # number of warmup steps for learning rate scheduler
|
||||
weight_decay=0.01, # strength of weight decay
|
||||
logging_dir='./logs', # directory for storing logs
|
||||
load_best_model_at_end=True, # load the best model when finished training (default metric is loss)
|
||||
# but you can specify `metric_for_best_model` argument to change to accuracy or other metric
|
||||
logging_steps=200, # log & save weights each logging_steps
|
||||
evaluation_strategy="steps", # evaluate each `logging_steps`
|
||||
)
|
||||
|
||||
train_seq = torch.tensor(tokens_train['input_ids'])
|
||||
train_mask = torch.tensor(tokens_train['attention_mask'])
|
||||
train_y = torch.tensor(train_target.to_numpy())
|
||||
trainer = Trainer(
|
||||
model=model, # the instantiated Transformers model to be trained
|
||||
args=training_args, # training arguments, defined above
|
||||
train_dataset=train_dataset, # training dataset
|
||||
eval_dataset=valid_dataset, # evaluation dataset
|
||||
compute_metrics=compute_metrics, # the callback that computes metrics of interest
|
||||
)
|
||||
|
||||
#define a batch size
|
||||
batch_size = 32
|
||||
trainer.train()
|
||||
|
||||
# wrap tensors
|
||||
train_data = TensorDataset(train_seq, train_mask, train_y)
|
||||
trainer.evaluate()
|
||||
|
||||
# sampler for sampling the data during training
|
||||
train_sampler = RandomSampler(train_data)
|
||||
|
||||
# dataLoader for train set
|
||||
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
|
||||
|
||||
for param in bert.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
model = BERT_Arch(bert)
|
||||
model = model.to(device)
|
||||
# model.cuda(0)
|
||||
|
||||
optimizer = AdamW(model.parameters(), lr = 1e-5)
|
||||
|
||||
class_weights = compute_class_weight('balanced', np.unique(train_target.to_numpy()), train_target['1'])
|
||||
weights= torch.tensor(class_weights,dtype=torch.float)
|
||||
weights = weights.to(device)
|
||||
|
||||
# define the loss function
|
||||
cross_entropy = nn.NLLLoss(weight=weights)
|
||||
|
||||
# number of training epochs
|
||||
epochs = 10
|
||||
|
||||
def train():
|
||||
|
||||
model.train()
|
||||
|
||||
total_loss, total_accuracy = 0, 0
|
||||
|
||||
# empty list to save model predictions
|
||||
total_preds=[]
|
||||
|
||||
# iterate over batches
|
||||
for step,batch in enumerate(train_dataloader):
|
||||
|
||||
# progress update after every 50 batches.
|
||||
if step % 50 == 0 and not step == 0:
|
||||
print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader)))
|
||||
|
||||
# push the batch to gpu
|
||||
batch = [r.to(device) for r in batch]
|
||||
|
||||
sent_id, mask, labels = batch
|
||||
|
||||
# clear previously calculated gradients
|
||||
model.zero_grad()
|
||||
|
||||
# get model predictions for the current batch
|
||||
preds = model(sent_id, mask)
|
||||
|
||||
# compute the loss between actual and predicted values
|
||||
labels = torch.tensor([x[0] for x in labels]).to(device)
|
||||
loss = cross_entropy(preds, labels)
|
||||
|
||||
# add on to the total loss
|
||||
total_loss = total_loss + loss.item()
|
||||
|
||||
# backward pass to calculate the gradients
|
||||
loss.backward()
|
||||
|
||||
# clip the the gradients to 1.0. It helps in preventing the exploding gradient problem
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
|
||||
# update parameters
|
||||
optimizer.step()
|
||||
|
||||
# model predictions are stored on GPU. So, push it to CPU
|
||||
preds=preds.detach().cpu().numpy()
|
||||
|
||||
# append the model predictions
|
||||
total_preds.append(preds)
|
||||
|
||||
# compute the training loss of the epoch
|
||||
avg_loss = total_loss / len(train_dataloader)
|
||||
|
||||
# predictions are in the form of (no. of batches, size of batch, no. of classes).
|
||||
# reshape the predictions in form of (number of samples, no. of classes)
|
||||
total_preds = np.concatenate(total_preds, axis=0)
|
||||
|
||||
#returns the loss and predictions
|
||||
return avg_loss, total_preds
|
||||
|
||||
def evaluate():
|
||||
|
||||
print("\nEvaluating...")
|
||||
|
||||
# deactivate dropout layers
|
||||
model.eval()
|
||||
|
||||
total_loss, total_accuracy = 0, 0
|
||||
|
||||
# empty list to save the model predictions
|
||||
total_preds = []
|
||||
|
||||
# iterate over batches
|
||||
for step,batch in enumerate(train_dataloader):
|
||||
|
||||
# Progress update every 50 batches.
|
||||
if step % 50 == 0 and not step == 0:
|
||||
|
||||
# Calculate elapsed time in minutes.
|
||||
|
||||
# Report progress.
|
||||
print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader)))
|
||||
|
||||
# push the batch to gpu
|
||||
batch = [t.to(device) for t in batch]
|
||||
|
||||
sent_id, mask, labels = batch
|
||||
|
||||
# deactivate autograd
|
||||
with torch.no_grad():
|
||||
|
||||
# model predictions
|
||||
preds = model(sent_id, mask)
|
||||
|
||||
# compute the validation loss between actual and predicted values
|
||||
labels = torch.tensor([x[0] for x in labels]).to(device)
|
||||
loss = cross_entropy(preds,labels)
|
||||
|
||||
total_loss = total_loss + loss.item()
|
||||
|
||||
preds = preds.detach().cpu().numpy()
|
||||
|
||||
total_preds.append(preds)
|
||||
|
||||
# compute the validation loss of the epoch
|
||||
avg_loss = total_loss / len(train_dataloader)
|
||||
|
||||
# reshape the predictions in form of (number of samples, no. of classes)
|
||||
total_preds = np.concatenate(total_preds, axis=0)
|
||||
|
||||
return avg_loss, total_preds
|
||||
|
||||
# avg_loss, total_preds = train()
|
||||
# set initial loss to infinite
|
||||
best_valid_loss = float('inf')
|
||||
|
||||
# empty lists to store training and validation loss of each epoch
|
||||
train_losses=[]
|
||||
valid_losses=[]
|
||||
|
||||
print("Started training!")
|
||||
#for each epoch
|
||||
for epoch in range(epochs):
|
||||
|
||||
print('\n Epoch {:} / {:}'.format(epoch + 1, epochs))
|
||||
|
||||
#train model
|
||||
train_loss, _ = train()
|
||||
|
||||
#evaluate model
|
||||
valid_loss, _ = evaluate()
|
||||
|
||||
#save the best model
|
||||
if valid_loss < best_valid_loss:
|
||||
best_valid_loss = valid_loss
|
||||
torch.save(model.state_dict(), 'saved_weights.pt')
|
||||
|
||||
# append training and validation loss
|
||||
train_losses.append(train_loss)
|
||||
valid_losses.append(valid_loss)
|
||||
|
||||
print(f'\nTraining Loss: {train_loss:.3f}')
|
||||
print(f'Validation Loss: {valid_loss:.3f}')
|
||||
|
||||
print("Finished !!!")
|
||||
model_path = "bert-base-uncased-pretrained"
|
||||
model.save_pretrained(model_path)
|
||||
tokenizer.save_pretrained(model_path)
|
44
model.py
44
model.py
@ -1,44 +0,0 @@
|
||||
import torch.nn as nn
|
||||
|
||||
class BERT_Arch(nn.Module):
|
||||
|
||||
def __init__(self, bert):
|
||||
|
||||
super(BERT_Arch, self).__init__()
|
||||
|
||||
self.bert = bert
|
||||
|
||||
# dropout layer
|
||||
self.dropout = nn.Dropout(0.1)
|
||||
|
||||
# relu activation function
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
# dense layer 1
|
||||
self.fc1 = nn.Linear(2,512)
|
||||
|
||||
# dense layer 2 (Output layer)
|
||||
self.fc2 = nn.Linear(512,2)
|
||||
|
||||
#softmax activation function
|
||||
self.softmax = nn.LogSoftmax(dim=1)
|
||||
|
||||
#define the forward pass
|
||||
def forward(self, sent_id, mask):
|
||||
|
||||
#pass the inputs to the model
|
||||
senence_classifier_output = self.bert(sent_id, attention_mask=mask)
|
||||
x = senence_classifier_output.logits.float()
|
||||
x = self.fc1(x)
|
||||
|
||||
x = self.relu(x)
|
||||
|
||||
x = self.dropout(x)
|
||||
|
||||
# output layer
|
||||
x = self.fc2(x)
|
||||
|
||||
# apply softmax activation
|
||||
x = self.softmax(x)
|
||||
|
||||
return x
|
Loading…
Reference in New Issue
Block a user