This commit is contained in:
wangobango 2021-06-16 13:03:28 +02:00
parent f3404fc347
commit 6fde30cb6e

95
main.py
View File

@ -28,8 +28,8 @@ def words_to_vecs(list_of_words):
return [nlp(x).vector for x in list_of_words]
def softXEnt(input, target):
m = torch.nn.LogSoftmax(dim = 1)
logprobs = m(input)
m = torch.nn.LogSoftmax()
logprobs = m(input, dim=1)
return -(target * logprobs).sum() / input.shape[0]
def compute_class_vector(mark, classes):
@ -43,6 +43,9 @@ def compute_class_vector(mark, classes):
data_dir = "./fa/poleval_final_dataset/train"
data_nopunc_dir = "./fa/poleval_final_dataset1/train"
mode = "train"
# mode = "evaluate"
# mode = "generate"
data_paths = os.listdir(data_dir)
data_paths = [data_dir + "/" + x for x in data_paths]
@ -61,36 +64,62 @@ model.train()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.02)
loss_function = softXEnt
for epoch in range(epochs):
for path in tqdm.tqdm(data_paths):
with open(path, "r") as file:
list = file.readlines()[:-1]
for i in range(0, len(list) - context_size - 1):
model.zero_grad()
x = list[i: i + context_size]
x = [line2word(y) for y in x]
x_1 = [line2word(list[i + context_size + 1])]
x = x + x_1
x = words_to_vecs(x)
mark = find_interpunction(x, classes)
mark = words_to_vecs(mark)
x = torch.tensor(x, dtype=torch.float)
mark = torch.tensor(mark, dtype=torch.float)
output, (hidden_state, cell_state) = model.forward(x, hidden_state, cell_state)
output = output.squeeze(1)
loss = loss_function(output, compute_class_vector(mark, classes))
loss.backward()
optimizer.step()
hidden_state = hidden_state.detach()
cell_state = cell_state.detach()
if mode == "train":
for epoch in range(epochs):
for path in tqdm.tqdm(data_paths):
with open(path, "r") as file:
list = file.readlines()[:-1]
for i in range(0, len(list) - context_size - 1):
model.zero_grad()
x = list[i: i + context_size]
x = [line2word(y) for y in x]
x_1 = [line2word(list[i + context_size + 1])]
mark = find_interpunction(x[-1], classes)
# mark = words_to_vecs(mark)
"""
vector -> (96,), np nadarray
"""
print("Epoch: {}".format(epoch))
torch.save(
model.state_dict(),
os.path.join("./", f"{output_prefix}-{epoch}.pt"),
)
x = x + x_1
x = words_to_vecs(x)
x = torch.tensor(x, dtype=torch.float)
# mark = torch.tensor(mark, dtype=torch.float)
output, (hidden_state, cell_state) = model.forward(x, hidden_state, cell_state)
output = output.squeeze(1)
loss = loss_function(output, compute_class_vector(mark, classes))
loss.backward()
optimizer.step()
hidden_state = hidden_state.detach()
cell_state = cell_state.detach()
print("Epoch: {}".format(epoch))
torch.save(
model.state_dict(),
os.path.join("./", f"{output_prefix}-{epoch}.pt"),
)
elif mode == "evaluate":
for pathA, pathB in zip(data_nopunc_dir, data_dir):
listA = []
listB = []
with open(pathA, "r") as file:
listA = file.readlines()[:-1]
with open(pathA, "r") as file:
listb = file.readlines()[:-1]
for i in range(0, len(list) - context_size - 1):
model.zero_grad()
x = listA[i: i + context_size]
x = [line2word(y) for y in x]
x_1 = [line2word(listA[i + context_size + 1])]
x = x + x_1
x = words_to_vecs(x)
y = listB[i + context_size]
y = [line2word(x) for x in y]
mark_y = find_interpunction(y)
x = torch.tensor(x, dtype=torch.float)
output, (hidden_state, cell_state) = model.forward(x, hidden_state, cell_state)
if classes[np.argmax(output)] == mark_y:
print('dupa')