import torch class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() # in: 4 słowa kontekstu przed i 1 słowo kontekstu po """ 5 in features 150 out features """ self.dense1 = torch.nn.Linear(6, 150, bias=False) self.tanh1 = torch.nn.Tanh() """ 150 in features 300 hidden values 2 num layers """ self.lstm = torch.nn.LSTM(150, 300, 2) self.dense2 = torch.nn.Linear(300, 7) self.softmax = torch.nn.Softmax(dim=1) def forward(self, data, hidden_state, cell_state): data = self.dense1(data.T) data = self.tanh1(data) data, (hidden_state, cell_state) = self.lstm(data.unsqueeze(1), (hidden_state, cell_state)) data = self.dense2(data) data = self.softmax(data) return data, (hidden_state, cell_state)