forked from kalmar/DALGLI0
88 lines
2.6 KiB
Java
88 lines
2.6 KiB
Java
|
import java.util.Arrays;
|
||
|
|
||
|
public class PolynomialOperations {
|
||
|
|
||
|
public static int[] multiple(int[] f, int[] g, int n) {
|
||
|
int[] result = new int[f.length + g.length - 1];
|
||
|
for (int i = 0; i < f.length; i++)
|
||
|
for (int j = 0; j < g.length; j++)
|
||
|
result[i + j] += f[i] * g[j];
|
||
|
|
||
|
for (int i = 0; i < result.length; i++)
|
||
|
result[i] = result[i] % n;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
private static int findFactor(int a, int b, int mod) {
|
||
|
for (int i = 0; i < mod; i++)
|
||
|
if (a == (b * i) % mod)
|
||
|
return i;
|
||
|
return Integer.MIN_VALUE;
|
||
|
}
|
||
|
|
||
|
private static int[] shr(int[] p, int shift) {
|
||
|
if (shift <= 0)
|
||
|
return p;
|
||
|
int[] shiftedPoly = new int[p.length];
|
||
|
for (int i = 0; i < p.length - shift; i++)
|
||
|
shiftedPoly[i] = p[i + shift];
|
||
|
return shiftedPoly;
|
||
|
}
|
||
|
|
||
|
private static void polyMultiply(int[] p, int n) {
|
||
|
Arrays.stream(p).forEach(value -> value = value * n);
|
||
|
}
|
||
|
|
||
|
private static int[] polySubtract(int[] p, int[] s) {
|
||
|
int result[] = Arrays.copyOf(p, p.length);
|
||
|
for (int i = 0; i < p.length; ++i) {
|
||
|
result[i] = p[i] - s[i];
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
private static int[] createNewPoly(int[] p, int size) {
|
||
|
int[] tmpTab = new int[size];
|
||
|
for (int j = 0; j < p.length; j++) {
|
||
|
tmpTab[tmpTab.length - 1 - j] = p[p.length - 1 - j];
|
||
|
}
|
||
|
return tmpTab;
|
||
|
}
|
||
|
|
||
|
private static void applyModuloToTab(int p[], int mod) {
|
||
|
Arrays.stream(p).forEach(value -> value = value % mod);
|
||
|
}
|
||
|
|
||
|
public static int[] divide(int[] n, int[] d, int mod) {
|
||
|
if (n.length < d.length) {
|
||
|
throw new IllegalArgumentException("Numerator and denominator vectors must have the same size");
|
||
|
}
|
||
|
int nd = n.length - 1;
|
||
|
int dd = d.length - 1;
|
||
|
int index = 0;
|
||
|
int[] tmpTab = createNewPoly(d, n.length);
|
||
|
while (nd >= dd) {
|
||
|
int factor = findFactor(n[nd], d[dd], mod);
|
||
|
tmpTab = shr(tmpTab, index);
|
||
|
polyMultiply(tmpTab, factor);
|
||
|
|
||
|
applyModuloToTab(tmpTab, mod);
|
||
|
tmpTab = polySubtract(n, tmpTab);
|
||
|
nd--;
|
||
|
index++;
|
||
|
}
|
||
|
return Arrays.copyOf(n, index - 1);
|
||
|
}
|
||
|
|
||
|
public static int[] NWD(int[] a, int[] b, int mod) {
|
||
|
if (a.length <= 0 || b.length <= 0)
|
||
|
return null;
|
||
|
|
||
|
while (b.length != 0) {
|
||
|
int[] c = divide(a, b, mod);
|
||
|
a = b;
|
||
|
b = c;
|
||
|
}
|
||
|
return a;
|
||
|
}
|
||
|
}
|