Zaktualizuj 'skrypt.py'
This commit is contained in:
parent
209ecbf4e7
commit
a156917320
37
skrypt.py
37
skrypt.py
@ -7,30 +7,35 @@ from numpy import loadtxt
|
|||||||
from xgboost import XGBClassifier
|
from xgboost import XGBClassifier
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.metrics import accuracy_score
|
from sklearn.metrics import accuracy_score
|
||||||
tsv_file = open("test-A/in.tsv")
|
tsv_file = open("train/in.tsv")
|
||||||
|
tsv_file3 = open("dev-0/in.tsv")
|
||||||
|
tsv_file2 = open("train/expected.tsv")
|
||||||
read_tsv = csv.reader(tsv_file)
|
read_tsv = csv.reader(tsv_file)
|
||||||
|
read_tsv2 = csv.reader(tsv_file2)
|
||||||
listatesting = []
|
listatesting = []
|
||||||
for line in read_tsv:
|
listatesting2 = []
|
||||||
listatesting.append(line[0])
|
listatesting = list(tsv_file)
|
||||||
|
listatesting3 = []
|
||||||
|
listatesting3 = list(tsv_file3)
|
||||||
|
for line2 in read_tsv2:
|
||||||
|
listatesting2.append(line2)
|
||||||
|
|
||||||
lista = []
|
lista = []
|
||||||
|
|
||||||
for line in sys.stdin:
|
|
||||||
lista.append(line)
|
|
||||||
|
|
||||||
vectorizer = CountVectorizer()
|
vectorizer = CountVectorizer()
|
||||||
X = vectorizer.fit_transform(lista)
|
seed = 7
|
||||||
Y = loadtxt("train/expected.tsv")
|
X = vectorizer.fit_transform(listatesting)
|
||||||
seed = 1
|
Y = np.ravel(listatesting2)
|
||||||
|
X_train, y_train, x_test, y_test = train_test_split(X,Y, test_size=0.33,random_state=seed)
|
||||||
|
seed = 7
|
||||||
param = {
|
param = {
|
||||||
'objective':'binary:logistic'}
|
'objective':'binary:logistic'}
|
||||||
|
|
||||||
X_train = X
|
|
||||||
X_test = Y
|
|
||||||
Y_train = vectorizer.fit_transform(listatesting)
|
|
||||||
model = XGBClassifier()
|
model = XGBClassifier()
|
||||||
model.fit(X_train, X_test)
|
model.fit(X_train, x_test)
|
||||||
y_pred = model.predict_proba(X_train)
|
y_pred = model.predict_proba(y_train)
|
||||||
predictions = [value for value in y_pred]
|
Z_train = vectorizer.transform(listatesting3)
|
||||||
|
y_pred2 = model.predict_proba(Z_train)
|
||||||
|
predictions = [value for value in y_pred2]
|
||||||
for a in predictions:
|
for a in predictions:
|
||||||
print(a[0])
|
print(1-a[0])
|
||||||
|
Loading…
Reference in New Issue
Block a user