WSS-project/P5. Graph-based.ipynb

1434 lines
552 KiB
Plaintext
Raw Normal View History

2021-05-07 22:16:28 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Self made RP3-beta"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import helpers\n",
"import pandas as pd\n",
"import numpy as np\n",
"import scipy.sparse as sparse\n",
"from collections import defaultdict\n",
"from itertools import chain\n",
"import random\n",
"import time\n",
"import matplotlib.pyplot as plt\n",
"\n",
"train_read = pd.read_csv(\"./Datasets/ml-100k/train.csv\", sep=\"\\t\", header=None)\n",
"test_read = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"(\n",
" train_ui,\n",
" test_ui,\n",
" user_code_id,\n",
" user_id_code,\n",
" item_code_id,\n",
" item_id_code,\n",
") = helpers.data_to_csr(train_read, test_read)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class RP3Beta:\n",
" def fit(self, train_ui, alpha, beta):\n",
" \"\"\"We weight our edges by user's explicit ratings so if user rated movie high we'll follow that path\n",
" with higher probability.\"\"\"\n",
" self.train_ui = train_ui\n",
" self.train_iu = train_ui.transpose()\n",
"\n",
" self.alpha = alpha\n",
" self.beta = beta\n",
"\n",
" # Define Pui\n",
" Pui = sparse.csr_matrix(self.train_ui / self.train_ui.sum(axis=1))\n",
"\n",
" # Define Piu\n",
" to_divide = np.vectorize(lambda x: x if x > 0 else 1)(\n",
" self.train_iu.sum(axis=1)\n",
" ) # to avoid dividing by zero\n",
" Piu = sparse.csr_matrix(self.train_iu / to_divide)\n",
" item_orders = (self.train_ui > 0).sum(axis=0)\n",
"\n",
" Pui = Pui.power(self.alpha)\n",
" Piu = Piu.power(self.alpha)\n",
"\n",
" P3 = Pui * Piu * Pui\n",
"\n",
" P3 /= np.power(\n",
" np.vectorize(lambda x: x if x > 0 else 1)(item_orders), self.beta\n",
" )\n",
"\n",
" self.estimations = np.array(P3)\n",
"\n",
" def recommend(self, user_code_id, item_code_id, topK=10):\n",
"\n",
" top_k = defaultdict(list)\n",
" for nb_user, user in enumerate(self.estimations):\n",
"\n",
" user_rated = self.train_ui.indices[\n",
" self.train_ui.indptr[nb_user] : self.train_ui.indptr[nb_user + 1]\n",
" ]\n",
" for item, score in enumerate(user):\n",
" if item not in user_rated and not np.isnan(score):\n",
" top_k[user_code_id[nb_user]].append((item_code_id[item], score))\n",
" result = []\n",
" # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)\n",
" for uid, item_scores in top_k.items():\n",
" item_scores.sort(key=lambda x: x[1], reverse=True)\n",
" result.append([uid] + list(chain(*item_scores[:topK])))\n",
" return result\n",
"\n",
" def estimate(self, user_code_id, item_code_id, test_ui):\n",
" result = []\n",
" for user, item in zip(*test_ui.nonzero()):\n",
" result.append(\n",
" [\n",
" user_code_id[user],\n",
" item_code_id[item],\n",
" self.estimations[user, item]\n",
" if not np.isnan(self.estimations[user, item])\n",
" else 1,\n",
" ]\n",
" )\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"model = RP3Beta()\n",
"model.fit(train_ui, alpha=1, beta=0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"top_n = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))\n",
"\n",
"top_n.to_csv(\n",
" \"Recommendations generated/ml-100k/Self_P3_reco.csv\", index=False, header=False\n",
")\n",
"\n",
"estimations = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))\n",
"estimations.to_csv(\n",
" \"Recommendations generated/ml-100k/Self_P3_estimations.csv\",\n",
" index=False,\n",
" header=False,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 8787.46it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3.702446</td>\n",
" <td>3.527273</td>\n",
" <td>0.282185</td>\n",
" <td>0.192092</td>\n",
" <td>0.186749</td>\n",
" <td>0.21698</td>\n",
" <td>0.204185</td>\n",
" <td>0.240096</td>\n",
" <td>0.339114</td>\n",
" <td>0.204905</td>\n",
" <td>0.572157</td>\n",
" <td>0.593544</td>\n",
" <td>0.875928</td>\n",
" <td>1.0</td>\n",
" <td>0.077201</td>\n",
" <td>3.875892</td>\n",
" <td>0.974947</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" RMSE MAE precision recall F_1 F_05 \\\n",
"0 3.702446 3.527273 0.282185 0.192092 0.186749 0.21698 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 \n",
"\n",
" HR Reco in test Test coverage Shannon Gini \n",
"0 0.875928 1.0 0.077201 3.875892 0.974947 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import evaluation_measures as ev\n",
"\n",
"estimations_df = pd.read_csv(\n",
" \"Recommendations generated/ml-100k/Self_P3_estimations.csv\", header=None\n",
")\n",
"reco = np.loadtxt(\"Recommendations generated/ml-100k/Self_P3_reco.csv\", delimiter=\",\")\n",
"\n",
"ev.evaluate(\n",
" test=pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None),\n",
" estimations_df=estimations_df,\n",
" reco=reco,\n",
" super_reactions=[4, 5],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Let's check hyperparameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Alpha"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/8 [00:00<?, ?it/s]\n",
"943it [00:00, 9826.90it/s]\n",
" 12%|█▎ | 1/8 [00:07<00:55, 7.93s/it]\n",
"0it [00:00, ?it/s]\u001b[A\n",
"943it [00:00, 8050.54it/s]\u001b[A\n",
" 25%|██▌ | 2/8 [00:15<00:47, 7.94s/it]\n",
"943it [00:00, 9441.40it/s]\n",
" 38%|███▊ | 3/8 [00:24<00:40, 8.01s/it]\n",
"943it [00:00, 9745.57it/s]\n",
" 50%|█████ | 4/8 [00:32<00:32, 8.13s/it]\n",
"943it [00:00, 10134.88it/s]\n",
" 62%|██████▎ | 5/8 [00:40<00:23, 7.98s/it]\n",
"943it [00:00, 10252.12it/s]\n",
" 75%|███████▌ | 6/8 [00:47<00:15, 7.94s/it]\n",
"943it [00:00, 9769.78it/s]\n",
" 88%|████████▊ | 7/8 [00:55<00:07, 7.97s/it]\n",
"0it [00:00, ?it/s]\u001b[A\n",
"943it [00:00, 8272.37it/s]\u001b[A\n",
"100%|██████████| 8/8 [01:03<00:00, 7.99s/it]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Alpha</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.2</td>\n",
" <td>268.177832</td>\n",
" <td>211.732649</td>\n",
" <td>0.262672</td>\n",
" <td>0.166858</td>\n",
" <td>0.166277</td>\n",
" <td>0.197184</td>\n",
" <td>0.187661</td>\n",
" <td>0.203252</td>\n",
" <td>0.320910</td>\n",
" <td>0.196132</td>\n",
" <td>0.563378</td>\n",
" <td>0.580866</td>\n",
" <td>0.850477</td>\n",
" <td>1.000000</td>\n",
" <td>0.060606</td>\n",
" <td>3.669627</td>\n",
" <td>0.979636</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.4</td>\n",
" <td>10.546689</td>\n",
" <td>7.792373</td>\n",
" <td>0.268505</td>\n",
" <td>0.172669</td>\n",
" <td>0.171569</td>\n",
" <td>0.202643</td>\n",
" <td>0.192489</td>\n",
" <td>0.212653</td>\n",
" <td>0.326760</td>\n",
" <td>0.200172</td>\n",
" <td>0.565148</td>\n",
" <td>0.583801</td>\n",
" <td>0.854719</td>\n",
" <td>1.000000</td>\n",
" <td>0.064214</td>\n",
" <td>3.726996</td>\n",
" <td>0.978426</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.6</td>\n",
" <td>3.143988</td>\n",
" <td>2.948790</td>\n",
" <td>0.274655</td>\n",
" <td>0.180502</td>\n",
" <td>0.177820</td>\n",
" <td>0.208730</td>\n",
" <td>0.198176</td>\n",
" <td>0.222746</td>\n",
" <td>0.332872</td>\n",
" <td>0.203290</td>\n",
" <td>0.568872</td>\n",
" <td>0.587738</td>\n",
" <td>0.870626</td>\n",
" <td>1.000000</td>\n",
" <td>0.065657</td>\n",
" <td>3.785282</td>\n",
" <td>0.977090</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.8</td>\n",
" <td>3.670728</td>\n",
" <td>3.495735</td>\n",
" <td>0.281972</td>\n",
" <td>0.189868</td>\n",
" <td>0.185300</td>\n",
" <td>0.216071</td>\n",
" <td>0.203541</td>\n",
" <td>0.236751</td>\n",
" <td>0.339867</td>\n",
" <td>0.206688</td>\n",
" <td>0.573729</td>\n",
" <td>0.592432</td>\n",
" <td>0.874867</td>\n",
" <td>1.000000</td>\n",
" <td>0.070707</td>\n",
" <td>3.832415</td>\n",
" <td>0.975998</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>3.702446</td>\n",
" <td>3.527273</td>\n",
" <td>0.282185</td>\n",
" <td>0.192092</td>\n",
" <td>0.186749</td>\n",
" <td>0.216980</td>\n",
" <td>0.204185</td>\n",
" <td>0.240096</td>\n",
" <td>0.339114</td>\n",
" <td>0.204905</td>\n",
" <td>0.572157</td>\n",
" <td>0.593544</td>\n",
" <td>0.875928</td>\n",
" <td>1.000000</td>\n",
" <td>0.077201</td>\n",
" <td>3.875892</td>\n",
" <td>0.974947</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.2</td>\n",
" <td>3.704441</td>\n",
" <td>3.529251</td>\n",
" <td>0.280912</td>\n",
" <td>0.193633</td>\n",
" <td>0.187311</td>\n",
" <td>0.216872</td>\n",
" <td>0.203004</td>\n",
" <td>0.240588</td>\n",
" <td>0.338049</td>\n",
" <td>0.203453</td>\n",
" <td>0.571830</td>\n",
" <td>0.594313</td>\n",
" <td>0.883351</td>\n",
" <td>1.000000</td>\n",
" <td>0.085859</td>\n",
" <td>3.910718</td>\n",
" <td>0.974073</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.4</td>\n",
" <td>3.704580</td>\n",
" <td>3.529388</td>\n",
" <td>0.273595</td>\n",
" <td>0.190651</td>\n",
" <td>0.183874</td>\n",
" <td>0.212183</td>\n",
" <td>0.199464</td>\n",
" <td>0.239118</td>\n",
" <td>0.329550</td>\n",
" <td>0.195433</td>\n",
" <td>0.566171</td>\n",
" <td>0.592793</td>\n",
" <td>0.871686</td>\n",
" <td>1.000000</td>\n",
" <td>0.107504</td>\n",
" <td>3.961915</td>\n",
" <td>0.972674</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.6</td>\n",
" <td>3.704591</td>\n",
" <td>3.529399</td>\n",
" <td>0.263097</td>\n",
" <td>0.186255</td>\n",
" <td>0.178709</td>\n",
" <td>0.205170</td>\n",
" <td>0.191094</td>\n",
" <td>0.232920</td>\n",
" <td>0.317439</td>\n",
" <td>0.184917</td>\n",
" <td>0.552349</td>\n",
" <td>0.590545</td>\n",
" <td>0.868505</td>\n",
" <td>0.999576</td>\n",
" <td>0.156566</td>\n",
" <td>4.060156</td>\n",
" <td>0.969203</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Alpha RMSE MAE precision recall F_1 F_05 \\\n",
"0 0.2 268.177832 211.732649 0.262672 0.166858 0.166277 0.197184 \n",
"0 0.4 10.546689 7.792373 0.268505 0.172669 0.171569 0.202643 \n",
"0 0.6 3.143988 2.948790 0.274655 0.180502 0.177820 0.208730 \n",
"0 0.8 3.670728 3.495735 0.281972 0.189868 0.185300 0.216071 \n",
"0 1.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 \n",
"0 1.2 3.704441 3.529251 0.280912 0.193633 0.187311 0.216872 \n",
"0 1.4 3.704580 3.529388 0.273595 0.190651 0.183874 0.212183 \n",
"0 1.6 3.704591 3.529399 0.263097 0.186255 0.178709 0.205170 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.187661 0.203252 0.320910 0.196132 0.563378 0.580866 \n",
"0 0.192489 0.212653 0.326760 0.200172 0.565148 0.583801 \n",
"0 0.198176 0.222746 0.332872 0.203290 0.568872 0.587738 \n",
"0 0.203541 0.236751 0.339867 0.206688 0.573729 0.592432 \n",
"0 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 \n",
"0 0.203004 0.240588 0.338049 0.203453 0.571830 0.594313 \n",
"0 0.199464 0.239118 0.329550 0.195433 0.566171 0.592793 \n",
"0 0.191094 0.232920 0.317439 0.184917 0.552349 0.590545 \n",
"\n",
" HR Reco in test Test coverage Shannon Gini \n",
"0 0.850477 1.000000 0.060606 3.669627 0.979636 \n",
"0 0.854719 1.000000 0.064214 3.726996 0.978426 \n",
"0 0.870626 1.000000 0.065657 3.785282 0.977090 \n",
"0 0.874867 1.000000 0.070707 3.832415 0.975998 \n",
"0 0.875928 1.000000 0.077201 3.875892 0.974947 \n",
"0 0.883351 1.000000 0.085859 3.910718 0.974073 \n",
"0 0.871686 1.000000 0.107504 3.961915 0.972674 \n",
"0 0.868505 0.999576 0.156566 4.060156 0.969203 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from tqdm import tqdm\n",
"\n",
"result = []\n",
"for alpha in tqdm([round(i, 1) for i in np.arange(0.2, 1.6001, 0.2)]):\n",
" model = RP3Beta()\n",
" model.fit(train_ui, alpha=alpha, beta=0)\n",
" reco = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))\n",
" estimations_df = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))\n",
" to_append = ev.evaluate(\n",
" test=pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None),\n",
" estimations_df=estimations_df,\n",
" reco=np.array(reco),\n",
" super_reactions=[4, 5],\n",
" )\n",
" to_append.insert(0, \"Alpha\", alpha)\n",
" result.append(to_append)\n",
"\n",
"result = pd.concat(result)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCwAAAkoCAYAAACgVC5GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e3yU9Z3//z9eOWdCIJkQICEZEhVRUEALeD7V2qoVtV3b4lrXWv247qd2u213P7X76bbdtn632213u/2sXX9uW3Wr1R7sAaxnV9t6QEAFBAFFgRASIIRwzjmv3x9zBYcYIEBmrsnM8367zS1zva/rmnlNHN9ceV3v9+tt7o6IiIiIiIiISDrJCTsAEREREREREZGBlLAQERERERERkbSjhIWIiIiIiIiIpB0lLEREREREREQk7ShhISIiIiIiIiJpRwkLEREREREREUk7SliIiIiIiIjIfmZ2l5n9wxCOW2lmFyY/IslWSlhIxjGz9WbWbmZ7zGyzmd1rZqOCffeamZvZlQPO+X7Q/qlgu8DMvmdmjcHrrDOzfzvIe/Q//iOlH1REZAQJ+s0uMxs7oH1p0P/WJbR9PWibM+DYT5lZ74C+d4+ZVafoY4iIZAV3v9XdvzmE46a5+3MpCEmylBIWkqnmuvsoYCZwGvDlhH1vAjf0b5hZHvAx4O2EY74MzALmAKXARcBrg71HwuO2Yf8UIiKZZR1wbf+GmZ0KFCceYGYGXA9sJ6GvTvDSgL53lLs3JTNoEZGRKLjGFRnRlLCQjObum4EniCcu+i0AzjGz8mD7UmA5sDnhmNnAb9y9yePWu/t/pyJmEZEM9lPgLxK2bwAG9q3nAdXA54B5ZlaQothEREaEYMTal83sDTNrM7N7zKzIzC4MRgd/ycw2A/eYWY6Z3W5mb5tZq5n9wsyiCa91rpm9aGY7zGxjwmjje83sW8HzsWb2SHDMdjP7k5nlJMTygeB5YTBquSl4fN/MCoN9/bF90cy2mlmzmd2Y6t+djDxKWEhGM7Ma4DJgbUJzBzAfmBds/wXvvWBeCHzBzP63mZ0a3PETEZFjsxAYbWYnm1ku8Ang/gHH3EA8sfzzYPuKFMYnIjJSXAd8CDgeOBH4StA+AYgCk4BbgL8GrgYuIJ4MbgPuBDCzGPAY8P+ASuI3+JYO8l5fBBqDY8YDfw/4IMf9X+DM4HVmEB+p/JWE/ROAMcBE4CbgzoQbiCKDUsJCMtVvzWw3sBHYCnxtwP7/Bv7CzMYQ78B/O2D/PwH/TPwfgyXAJjMbODT5t0Gmuf/xv4b7Q4iIZKD+URaXAKuBTf07zCxCfIrez9y9G/gV750WcuaAvvdtRESyz3+4+0Z33w7cwbvT7fqAr7l7p7u3A38J/F93b3T3TuDrwDXBdJHrgKfd/UF373b3VndfOsh7dQNVwKTguD+5+2AJi+uAb7j7VndvAf6R+BS/xNf5RvAajwJ7gCnH+HuQDKeEhWSqq929FLgQOAk4oMibuz9PPEv8FeCRoENP3N/r7ne6+zlAGfF/CH5iZicPeI+yhMd/Je/jiIhkjJ8Cfw58iveObvsI0AM8Gmw/AFxmZpUJxywc0Pcen+yARUTS0MaE5xuIj54AaHH3joR9k4Df9Cd5gVVAL/GRErUcWMPtYP6F+GjlJ83sHTO7/SDHVQexDBYXQKu79yRs7wNGDeH9JYspYSEZzd3/ANwLfHeQ3fcTH+J2yNoU7t7u7ncSH0I3dbhjFBHJJu6+gXjxzcuBXw/YfQPxi9eGYP71L4F8Egp1iogIEE829IsB/cWHB4582AhcNiDRW+Tum4J9h036uvtud/+iux8HzCU+bfriQQ5tIp4gGSwukaOihIVkg+8Dl5jZzAHtPyA+JPmPA08ws78JigMVm1leMB2klPeuFCIiIkfuJuD97r43oW0icDHxmhUzeXcO9D8z+GohIiLZ7DNmVhMU0Px73q37M9BdwB1mNgnAzCrN7Kpg3wPAB8zs48H1bsUg18uY2RVmdkJQ020X8REavYO814PAV4L3GAt8lffWKRI5IkpYSMYL5tD9N/APA9q3u/szB5mD1w58j/jKIduAzwB/5u7vJByzwMz2JDx+k6SPICKSUdz9bXdfMqD5PGCpuz/p7pv7H8STy9PN7JTguLMG9L17zGx2Sj+AiEj4fgY8CbwTPL51kOP+nXix+SeD+m4LgTMA3L2B+Gi3LxJfSnop8UTxQJOBp4nXnHgJ+KG7PzfIcd8iXvttOfA68Ooh4hIZEhv8bzURERERERFJN2a2HrjZ3Z8OOxaRZNMICxERERERERFJO0pYiIiIiIiIiEja0ZQQEREREREREUk7GmEhIiIiIiIiImlHCQsRERERERERSTt5YQcwHMaOHet1dXVhhyEi8h6vvPLKNnevDDuOVFBfLCLpSP2wiEj4jrYvzoiERV1dHUuWDFzOXUQkfGa2IewYUkV9sYikI/XDIiLhO9q+WFNCRERERERERCTtKGEhIiIiIiIiImlHCQsRERERERERSTsZUcNCRNJDd3c3jY2NdHR0hB1KyhUVFVFTU0N+fn7YoYiIvEc29M/qh0VkOGRDf5lMw90XK2EhIsOmsbGR0tJS6urqMLOww0kZd6e1tZXGxkbq6+vDDkdE5D0yvX9OVT9sZpcC/w7kAj9y928P2H8d8KVgcw/wV+6+LNj3eeBmwIHXgRvdvcPM/gWYC3QBbwftO8ysDlgFrAleb6G735q0DyciQOb3l8mUjL5YU0JEZNh0dHRQUVGRdZ27mVFRUaFMvIikrUzvn1PRD5tZLnAncBkwFbjWzKYOOGwdcIG7Twe+CdwdnDsR+GtglrufQjzhMS845ynglOCcN4EvJ7ze2+4+M3goWSGSApneXyZTMvpiJSxEZFhla+eerZ9bREaOTO+nUvD55gBr3f0dd+8CHgKuSjzA3V9097ZgcyFQk7A7Dyg2szwgAjQF5zzp7j0HOUdEQpDp/WUyDffvTgkLEckoubm5zJw5k1NOOYW5c+eyY8cOANavX4+Z8Q//8A/7j922bRv5+fncdtttAKxZs4YLL7yQmTNncvLJJ3PLLbcA8NxzzzFmzBhmzpy5//H000+n/LOJiIxkZsb111+/f7unp4fKykquuOKKA4676qqrOOussw5o+/rXv87EiRMP6If7+/cUmghsTNhuDNoO5ibgMQB33wR8F2gAmoGd7v7kIOd8uv+cQL2ZvWZmfzCz844leBHJXkuWLOGv//qvD7q/qamJa665JoURDZ0SFiKSUYqLi1m6dCkrVqwgGo1y55137t933HHH8cgjj+zf/uUvf8m0adP2b//1X/81n//851m6dCmrVq3is5/97P595513HkuXLt3/+MAHPpCaDyQikiFKSkpYsWIF7e3tADz11FNMnHjg3/s7duzg1VdfZceOHaxbt+6Aff39c/+jrKwsVaH3G+y2oQ96oNlFxBMWXwq2y4mPxqgHqoESM/vkgHP+L9ADPBA0NQMxdz8N+ALwMzMbPch73WJmS8xsSUtLy1F9MBEZWXp7e4/o+FmzZvGDH/zgoPurq6v51a9+daxhJYUSFiKSsc466yw2bdq0f7u4uJiTTz6ZJUuWAPDzn/+cj3/84/v3Nzc3U1Pz7kjcU089NXXBiohkgcsuu4zf//73ADz44INce+21B+x/+OGHmTt3LvPmzeOhhx4KI8RDaQRqE7ZrCKZ1JDKz6cCPgKvcvTVo/gCwzt1b3L0b+DVwdsI5NwBXANe5uwO4e2f/+e7+CvGCnCcOfD93v9vdZ7n7rMrKymH4mCISpvXr13PSSSdxww03MH36dK655hr27dtHXV0d3/jGNzj33HP55S9/yZNPPslZZ53F6aefzsc+9jH27NkDwOLFizn77LOZMWMGc+bMYffu3Tz33HP7R7P94Q9/2D9S7bTTTmP37t2sX7+eU045BYjX8Ljxxhs59dRTOe2003j22WcBuPfee/noRz/KpZdeyuTJk/k//+f/pOT3oVVCRCQp/nHBSt5o2jWsrzm1ejRfmzvt8AcSzzw/88wz3HTTTQe0918ET5gwgdzcXKqrq2l
"text/plain": [
"<Figure size 1296x3024 with 18 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"metrics = list(result.columns[[i not in [\"Alpha\"] for i in result.columns]])\n",
"\n",
"charts_per_row = 6\n",
"charts_per_column = 3\n",
"\n",
"fig, axes = plt.subplots(\n",
" nrows=charts_per_row, ncols=charts_per_column, figsize=(18, 7 * charts_per_row)\n",
")\n",
"import itertools\n",
"\n",
"to_iter = [\n",
" i for i in itertools.product(range(charts_per_row), range(charts_per_column))\n",
"]\n",
"\n",
"for i in range(len(metrics)):\n",
" df = result[[\"Alpha\", metrics[i]]]\n",
" df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Beta"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/10 [00:00<?, ?it/s]\n",
"0it [00:00, ?it/s]\u001b[A\n",
"943it [00:00, 8133.31it/s]\u001b[A\n",
" 10%|█ | 1/10 [00:08<01:19, 8.87s/it]\n",
"0it [00:00, ?it/s]\u001b[A\n",
"943it [00:00, 8733.83it/s]\u001b[A\n",
" 20%|██ | 2/10 [00:17<01:10, 8.81s/it]\n",
"943it [00:00, 9872.77it/s]\n",
" 30%|███ | 3/10 [00:25<01:00, 8.61s/it]\n",
"943it [00:00, 10989.65it/s]\n",
" 40%|████ | 4/10 [00:33<00:50, 8.36s/it]\n",
"943it [00:00, 10108.59it/s]\n",
" 50%|█████ | 5/10 [00:41<00:40, 8.15s/it]\n",
"943it [00:00, 9989.31it/s]\n",
" 60%|██████ | 6/10 [00:49<00:32, 8.09s/it]\n",
"943it [00:00, 10311.97it/s]\n",
" 70%|███████ | 7/10 [00:56<00:23, 7.92s/it]\n",
"943it [00:00, 10283.20it/s]\n",
" 80%|████████ | 8/10 [01:04<00:15, 7.79s/it]\n",
"943it [00:00, 10486.98it/s]\n",
" 90%|█████████ | 9/10 [01:11<00:07, 7.75s/it]\n",
"943it [00:00, 10330.42it/s]\n",
"100%|██████████| 10/10 [01:19<00:00, 7.95s/it]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Beta</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>3.702446</td>\n",
" <td>3.527273</td>\n",
" <td>0.282185</td>\n",
" <td>0.192092</td>\n",
" <td>0.186749</td>\n",
" <td>0.216980</td>\n",
" <td>0.204185</td>\n",
" <td>0.240096</td>\n",
" <td>0.339114</td>\n",
" <td>0.204905</td>\n",
" <td>0.572157</td>\n",
" <td>0.593544</td>\n",
" <td>0.875928</td>\n",
" <td>1.000000</td>\n",
" <td>0.077201</td>\n",
" <td>3.875892</td>\n",
" <td>0.974947</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.1</td>\n",
" <td>3.703312</td>\n",
" <td>3.528128</td>\n",
" <td>0.290138</td>\n",
" <td>0.197597</td>\n",
" <td>0.192259</td>\n",
" <td>0.223336</td>\n",
" <td>0.210944</td>\n",
" <td>0.246153</td>\n",
" <td>0.347768</td>\n",
" <td>0.212034</td>\n",
" <td>0.581038</td>\n",
" <td>0.596328</td>\n",
" <td>0.884411</td>\n",
" <td>1.000000</td>\n",
" <td>0.085137</td>\n",
" <td>3.957416</td>\n",
" <td>0.972784</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.2</td>\n",
" <td>3.703825</td>\n",
" <td>3.528636</td>\n",
" <td>0.297137</td>\n",
" <td>0.201202</td>\n",
" <td>0.196067</td>\n",
" <td>0.228169</td>\n",
" <td>0.218026</td>\n",
" <td>0.252767</td>\n",
" <td>0.355655</td>\n",
" <td>0.219909</td>\n",
" <td>0.588904</td>\n",
" <td>0.598160</td>\n",
" <td>0.886532</td>\n",
" <td>1.000000</td>\n",
" <td>0.094517</td>\n",
" <td>4.053212</td>\n",
" <td>0.969980</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.3</td>\n",
" <td>3.704130</td>\n",
" <td>3.528939</td>\n",
" <td>0.303499</td>\n",
" <td>0.204749</td>\n",
" <td>0.199901</td>\n",
" <td>0.232829</td>\n",
" <td>0.225107</td>\n",
" <td>0.260797</td>\n",
" <td>0.363757</td>\n",
" <td>0.226825</td>\n",
" <td>0.599969</td>\n",
" <td>0.599964</td>\n",
" <td>0.888653</td>\n",
" <td>1.000000</td>\n",
" <td>0.105339</td>\n",
" <td>4.147779</td>\n",
" <td>0.966948</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.4</td>\n",
" <td>3.704313</td>\n",
" <td>3.529120</td>\n",
" <td>0.308908</td>\n",
" <td>0.208811</td>\n",
" <td>0.203854</td>\n",
" <td>0.237241</td>\n",
" <td>0.229614</td>\n",
" <td>0.266918</td>\n",
" <td>0.370758</td>\n",
" <td>0.232673</td>\n",
" <td>0.609385</td>\n",
" <td>0.602014</td>\n",
" <td>0.895016</td>\n",
" <td>0.999894</td>\n",
" <td>0.132035</td>\n",
" <td>4.259682</td>\n",
" <td>0.962989</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.5</td>\n",
" <td>3.704422</td>\n",
" <td>3.529229</td>\n",
" <td>0.314316</td>\n",
" <td>0.211411</td>\n",
" <td>0.206768</td>\n",
" <td>0.240986</td>\n",
" <td>0.237124</td>\n",
" <td>0.273416</td>\n",
" <td>0.378307</td>\n",
" <td>0.239297</td>\n",
" <td>0.622792</td>\n",
" <td>0.603327</td>\n",
" <td>0.903499</td>\n",
" <td>0.999046</td>\n",
" <td>0.168831</td>\n",
" <td>4.411281</td>\n",
" <td>0.956648</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.6</td>\n",
" <td>3.704488</td>\n",
" <td>3.529295</td>\n",
" <td>0.314634</td>\n",
" <td>0.206209</td>\n",
" <td>0.204818</td>\n",
" <td>0.240159</td>\n",
" <td>0.242489</td>\n",
" <td>0.273850</td>\n",
" <td>0.376438</td>\n",
" <td>0.238428</td>\n",
" <td>0.622042</td>\n",
" <td>0.600721</td>\n",
" <td>0.897137</td>\n",
" <td>0.996394</td>\n",
" <td>0.212843</td>\n",
" <td>4.621938</td>\n",
" <td>0.945932</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.7</td>\n",
" <td>3.704528</td>\n",
" <td>3.529335</td>\n",
" <td>0.304136</td>\n",
" <td>0.187298</td>\n",
" <td>0.191990</td>\n",
" <td>0.228749</td>\n",
" <td>0.238305</td>\n",
" <td>0.256201</td>\n",
" <td>0.358807</td>\n",
" <td>0.226808</td>\n",
" <td>0.593897</td>\n",
" <td>0.591207</td>\n",
" <td>0.868505</td>\n",
" <td>0.983033</td>\n",
" <td>0.256854</td>\n",
" <td>4.898568</td>\n",
" <td>0.928065</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.8</td>\n",
" <td>3.704552</td>\n",
" <td>3.529360</td>\n",
" <td>0.266384</td>\n",
" <td>0.147571</td>\n",
" <td>0.158660</td>\n",
" <td>0.194838</td>\n",
" <td>0.214485</td>\n",
" <td>0.209336</td>\n",
" <td>0.299850</td>\n",
" <td>0.184356</td>\n",
" <td>0.492852</td>\n",
" <td>0.571152</td>\n",
" <td>0.803818</td>\n",
" <td>0.936373</td>\n",
" <td>0.341270</td>\n",
" <td>5.257397</td>\n",
" <td>0.895882</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.9</td>\n",
" <td>3.704567</td>\n",
" <td>3.529375</td>\n",
" <td>0.162354</td>\n",
" <td>0.076967</td>\n",
" <td>0.089233</td>\n",
" <td>0.114583</td>\n",
" <td>0.134657</td>\n",
" <td>0.113253</td>\n",
" <td>0.160868</td>\n",
" <td>0.085486</td>\n",
" <td>0.243590</td>\n",
" <td>0.535405</td>\n",
" <td>0.580064</td>\n",
" <td>0.800106</td>\n",
" <td>0.415584</td>\n",
" <td>5.563910</td>\n",
" <td>0.857396</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Beta RMSE MAE precision recall F_1 F_05 \\\n",
"0 0.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 \n",
"0 0.1 3.703312 3.528128 0.290138 0.197597 0.192259 0.223336 \n",
"0 0.2 3.703825 3.528636 0.297137 0.201202 0.196067 0.228169 \n",
"0 0.3 3.704130 3.528939 0.303499 0.204749 0.199901 0.232829 \n",
"0 0.4 3.704313 3.529120 0.308908 0.208811 0.203854 0.237241 \n",
"0 0.5 3.704422 3.529229 0.314316 0.211411 0.206768 0.240986 \n",
"0 0.6 3.704488 3.529295 0.314634 0.206209 0.204818 0.240159 \n",
"0 0.7 3.704528 3.529335 0.304136 0.187298 0.191990 0.228749 \n",
"0 0.8 3.704552 3.529360 0.266384 0.147571 0.158660 0.194838 \n",
"0 0.9 3.704567 3.529375 0.162354 0.076967 0.089233 0.114583 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 \n",
"0 0.210944 0.246153 0.347768 0.212034 0.581038 0.596328 \n",
"0 0.218026 0.252767 0.355655 0.219909 0.588904 0.598160 \n",
"0 0.225107 0.260797 0.363757 0.226825 0.599969 0.599964 \n",
"0 0.229614 0.266918 0.370758 0.232673 0.609385 0.602014 \n",
"0 0.237124 0.273416 0.378307 0.239297 0.622792 0.603327 \n",
"0 0.242489 0.273850 0.376438 0.238428 0.622042 0.600721 \n",
"0 0.238305 0.256201 0.358807 0.226808 0.593897 0.591207 \n",
"0 0.214485 0.209336 0.299850 0.184356 0.492852 0.571152 \n",
"0 0.134657 0.113253 0.160868 0.085486 0.243590 0.535405 \n",
"\n",
" HR Reco in test Test coverage Shannon Gini \n",
"0 0.875928 1.000000 0.077201 3.875892 0.974947 \n",
"0 0.884411 1.000000 0.085137 3.957416 0.972784 \n",
"0 0.886532 1.000000 0.094517 4.053212 0.969980 \n",
"0 0.888653 1.000000 0.105339 4.147779 0.966948 \n",
"0 0.895016 0.999894 0.132035 4.259682 0.962989 \n",
"0 0.903499 0.999046 0.168831 4.411281 0.956648 \n",
"0 0.897137 0.996394 0.212843 4.621938 0.945932 \n",
"0 0.868505 0.983033 0.256854 4.898568 0.928065 \n",
"0 0.803818 0.936373 0.341270 5.257397 0.895882 \n",
"0 0.580064 0.800106 0.415584 5.563910 0.857396 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from tqdm import tqdm\n",
"\n",
"result = []\n",
"for beta in tqdm([round(i, 1) for i in np.arange(0, 1, 0.1)]):\n",
" model = RP3Beta()\n",
" model.fit(train_ui, alpha=1, beta=beta)\n",
" reco = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))\n",
" estimations_df = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))\n",
" to_append = ev.evaluate(\n",
" test=pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None),\n",
" estimations_df=estimations_df,\n",
" reco=np.array(reco),\n",
" super_reactions=[4, 5],\n",
" )\n",
" to_append.insert(0, \"Beta\", beta)\n",
" result.append(to_append)\n",
"\n",
"result = pd.concat(result)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCwAAAkoCAYAAACgVC5GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3zV5f3//8criwwgARJmEhIQZA9FhrturUpbd9UO21rb2lZrh3bPX4d2fmq/fvx02Dpw1FnrAK2zkgAiIltIAoQZEkII2cnr98c5wRCDBEjyPjnneb/dzq3n/X5f75PXRezFm9e5rtdl7o6IiIiIiIiISCSJCzoAEREREREREZH2lLAQERERERERkYijhIWIiIiIiIiIRBwlLEREREREREQk4ihhISIiIiIiIiIRRwkLEREREREREYk4SliIiIiIiIjIfmZ2l5l9rxPtVprZ6d0fkcQqJSwk6phZiZnVmlm1mW03s3vMrG/42j1m5mZ2cbt7fhc+/6nwcZKZ/drMSsOfU2xmvz3Iz2h9/bFHOyoi0ouEx80GM8tsd35ZePzNa3Puh+FzM9u1/ZSZNbcbe6vNbHgPdUNEJCa4+w3u/pNOtJvo7i/3QEgSo5SwkGh1kbv3BaYB04Hb2lxbB3yy9cDMEoDLgA1t2twGzABmAv2ADwFvdfQz2rxu7PJeiIhEl2LgqtYDM5sMpLRtYGYGXAtU0GasbmNhu7G3r7tv7c6gRUR6o/AzrkivpoSFRDV33w48Tyhx0epfwElmNiB8fB6wHNjeps0JwOPuvtVDStz9Hz0Rs4hIFLsX+ESb408C7cfWU4DhwFeBK80sqYdiExHpFcIz1m4zs1VmttvM/mZmyWZ2enh28LfMbDvwNzOLM7NbzWyDmZWb2cNmNrDNZ51sZm+YWaWZbW4z2/geM/tp+H2mmT0dblNhZq+ZWVybWM4Kv+8TnrW8Nfz6nZn1CV9rje0WM9tpZtvM7NM9/WcnvY8SFhLVzCwbOB9Y3+Z0HfAUcGX4+BO8/4G5APiamX3RzCaHv/ETEZGjUwD0N7PxZhYPXAHc167NJwkllh8KH1/Yg/GJiPQWVwPnAqOBscB3w+eHAgOBkcD1wFeAjwCnEUoG7wbuBDCzXOBZ4H+ALEJf8C3r4GfdApSG2wwBvg14B+2+A8wOf85UQjOVv9vm+lAgHRgBfAa4s80XiCIdUsJCotUTZrYX2AzsBH7Q7vo/gE+YWTqhAfyJdtd/DvyS0F8GS4AtZtZ+avIT4Uxz6+tzXd0JEZEo1DrL4mxgDbCl9YKZpRJaoveAuzcC/+T9y0Jmtxt7NyAiEnv+6O6b3b0C+BnvLbdrAX7g7vXuXgt8HviOu5e6ez3wQ+DS8HKRq4EX3H2euze6e7m7L+vgZzUCw4CR4XavuXtHCYurgR+7+053LwN+RGiJX9vP+XH4M54BqoFjj/LPQaKcEhYSrT7i7v2A04FxwAFF3tz9dUJZ4u8CT4cH9LbXm939Tnc/Ccgg9BfBX81sfLufkdHm9X/d1x0RkahxL/Bx4FO8f3bbR4Em4Jnw8f3A+WaW1aZNQbuxd3R3BywiEoE2t3m/kdDsCYAyd69rc20k8HhrkhdYDTQTmimRw4E13A7mdkKzleebWZGZ3XqQdsPDsXQUF0C5uze1Oa4B+nbi50sMU8JCopq7vwLcA9zRweX7CE1x+8DaFO5e6+53EppCN6GrYxQRiSXuvpFQ8c0LgMfaXf4koYfXTeH1148AibQp1CkiIkAo2dAqF2gtPtx+5sNm4Px2id5kd98SvnbIpK+773X3W9x9FHARoWXTZ3bQdCuhBElHcYkcESUsJBb8DjjbzKa1O/8HQlOSX21/g5ndFC4OlGJmCeHlIP14/04hIiJy+D4DnOHu+9qcGwGcSahmxTTeWwP9SzreLUREJJZ9ycyywwU0v817dX/auwv4mZmNBDCzLDObG752P3CWmV0eft4d1MHzMmZ2oZkdE67pVkVohkZzBz9rHvDd8M/IBL7P++sUiRwWJSwk6oXX0P0D+F678xXu/uJB1uDVAr8mtHPILuBLwCXuXtSmzb/MrLrN6/Fu6oKISFRx9w3uvqTd6VOAZe4+3923t74IJZenmNmkcLs57cbeajM7oUc7ICISvAeA+UBR+PXTg7T7PaFi8/PD9d0KgFkA7r6J0Gy3WwhtJb2MUKK4vTHAC4RqTiwE/uTuL3fQ7qeEar8tB94Bln5AXCKdYh3/W01EREREREQijZmVAJ919xeCjkWku2mGhYiIiIiIiIhEHCUsRERERERERCTiaEmIiIiIiIiIiEQczbAQERERERERkYijhIWIiIiIiIiIRJyEoAPoCpmZmZ6Xlxd0GCIi7/Pmm2/ucvesoOPoCRqLRSQSaRwWEQnekY7FUZGwyMvLY8mS9tu5i4gEz8w2Bh1DT9FYLCKRKOhx2MzOA34PxAN/dvdftLs+F/gJ0AI0ATe5++tmlgP8Axgavna3u//+g36WxmERiVRHOhZHRcJCRERERCTSmFk8cCdwNlAKLDazp9x9VZtmLwJPubub2RTgYWAcoeTFLe6+1Mz6AW+a2YJ294qIRDXVsBARERER6R4zgfXuXuTuDcCDwNy2Ddy92t/bti8N8PD5be6+NPx+L7AaGNFjkYuIRAAlLEREREREuscIYHOb41I6SDqY2UfNbA3wb+C6Dq7nAdOBwg6uXW9mS8xsSVlZWVfFLSISEaJ2SUhjYyOlpaXU1dUFHUqPS05OJjs7m8TExKBDEZEYFwtjscZcEfkA1sE5f98J98eBx83sVEL1LM7a/wFmfYFHCdW2qOrg3ruBuwFmzJjxvs8WkcMTC88u3amrn4uiNmFRWlpKv379yMvLw6yjvyuik7tTXl5OaWkp+fn5QYcjIjEu2sdijbkicgilQE6b42xg68Eau/urZjbazDLdfZeZJRJKVtzv7o91c6wiQvQ/u3Sn7nguitolIXV1dQwaNCjm/iMzMwYNGqSMoIhEhGgfizXmisghLAbGmFm+mSUBVwJPtW1gZsdYeJA0s+OAJKA8fO4vwGp3/00Pxy0Ss6L92aU7dcdzUdTOsABi9j+yWO23iESmaB+Tor1/InLk3L3JzG4Enie0relf3X2lmd0Qvn4XcAnwCTNrBGqBK8I7hpwMXAu8Y2bLwh/5bXd/psc7IhJj9Hf7kevqP7uonWERCeLj45k2bRqTJk3ioosuorKyEoCSkhLMjO9973v72+7atYvExERuvPFGANauXcvpp5/OtGnTGD9+PNdffz0AL7/8Munp6UybNm3/64UXXujxvomI9BZmxrXXXrv/uKmpiaysLC688MID2s2dO5c5c+YccO6HP/whI0aMOGDMbR3LRUQ6w92fcfex7j7a3X8WPndXOFmBu//S3Se6+zR3n+Pur4fPv+7u5u5TwtemKVkhIkdiyZIlfOUrXzno9a1bt3LppZf2YESdp4RFN0pJSWHZsmWsWLGCgQMHcuedd+6/NmrUKJ5++un9x4888ggTJ07cf/yVr3yFm2++mWXLlrF69Wq+/OUv7792yimnsGzZsv2vs87aX5dJRETaSUtLY8WKFdTW1gKwYMECRow4sEh/ZWUlS5cupbKykuLi4gOutY7Fra+MjIyeCl1ERETkfZqbmw+r/YwZM/jDH/5w0OvDhw/nn//859GG1S2UsOghc+bMYcuWLfuPU1JSGD9+PEuWLAHgoYce4vLLL99/fdu2bWRnZ+8/njx5cs8FKyISZc4//3z+/e9/AzBv3jyuuuqqA64/+uijXHTRRVx55ZU8+OCDQYQoIiIiQklJCePGjeOTn/wkU6ZM4dJLL6Wmpoa8vDx+/OMfc/LJJ/PII48wf/585syZw3HHHcdll11GdXU1AIsXL+bEE09k6tSpzJw5k7179/Lyyy/vn1n6yiuv7J81On36dPbu3UtJSQmTJk0CQjU8Pv3pTzN58mSmT5/OSy+9BMA999zDxz72Mc477zzGjBnDN7/5zR7584jqGhatfvSvlaza+r5doI7KhOH9+cFFEw/dkFAG7MUXX+Qzn/nMAedbH4yHDh1KfHw
"text/plain": [
"<Figure size 1296x3024 with 18 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"metrics = list(result.columns[[i not in [\"Beta\"] for i in result.columns]])\n",
"\n",
"charts_per_row = 6\n",
"charts_per_column = 3\n",
"\n",
"fig, axes = plt.subplots(\n",
" nrows=charts_per_row, ncols=charts_per_column, figsize=(18, 7 * charts_per_row)\n",
")\n",
"import itertools\n",
"\n",
"to_iter = [\n",
" i for i in itertools.product(range(charts_per_row), range(charts_per_column))\n",
"]\n",
"\n",
"for i in range(len(metrics)):\n",
" df = result[[\"Beta\", metrics[i]]]\n",
" df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check sample recommendations"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>rating</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>39675</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>That Thing You Do! (1996)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44133</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Father of the Bride Part II (1995)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55221</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Fan, The (1996)</td>\n",
" <td>Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34957</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>My Best Friend's Wedding (1997)</td>\n",
" <td>Comedy, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34654</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Sabrina (1995)</td>\n",
" <td>Comedy, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56202</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Happy Gilmore (1996)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57099</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Up Close and Personal (1996)</td>\n",
" <td>Drama, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60181</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>One Night Stand (1997)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5385</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Jerry Maguire (1996)</td>\n",
" <td>Drama, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12546</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Truth About Cats &amp; Dogs, The (1996)</td>\n",
" <td>Comedy, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9903</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>Time to Kill, A (1996)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8705</th>\n",
" <td>599</td>\n",
" <td>5</td>\n",
" <td>To Gillian on Her 37th Birthday (1996)</td>\n",
" <td>Drama, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63190</th>\n",
" <td>599</td>\n",
" <td>4</td>\n",
" <td>Craft, The (1996)</td>\n",
" <td>Drama, Horror</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60634</th>\n",
" <td>599</td>\n",
" <td>4</td>\n",
" <td>Romy and Michele's High School Reunion (1997)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63675</th>\n",
" <td>599</td>\n",
" <td>4</td>\n",
" <td>Set It Off (1996)</td>\n",
" <td>Action, Crime</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user rating title \\\n",
"39675 599 5 That Thing You Do! (1996) \n",
"44133 599 5 Father of the Bride Part II (1995) \n",
"55221 599 5 Fan, The (1996) \n",
"34957 599 5 My Best Friend's Wedding (1997) \n",
"34654 599 5 Sabrina (1995) \n",
"56202 599 5 Happy Gilmore (1996) \n",
"57099 599 5 Up Close and Personal (1996) \n",
"60181 599 5 One Night Stand (1997) \n",
"5385 599 5 Jerry Maguire (1996) \n",
"12546 599 5 Truth About Cats & Dogs, The (1996) \n",
"9903 599 5 Time to Kill, A (1996) \n",
"8705 599 5 To Gillian on Her 37th Birthday (1996) \n",
"63190 599 4 Craft, The (1996) \n",
"60634 599 4 Romy and Michele's High School Reunion (1997) \n",
"63675 599 4 Set It Off (1996) \n",
"\n",
" genres \n",
"39675 Comedy \n",
"44133 Comedy \n",
"55221 Thriller \n",
"34957 Comedy, Romance \n",
"34654 Comedy, Romance \n",
"56202 Comedy \n",
"57099 Drama, Romance \n",
"60181 Drama \n",
"5385 Drama, Romance \n",
"12546 Comedy, Romance \n",
"9903 Drama \n",
"8705 Drama, Romance \n",
"63190 Drama, Horror \n",
"60634 Comedy \n",
"63675 Action, Crime "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>rec_nb</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>262</th>\n",
" <td>599.0</td>\n",
" <td>1</td>\n",
" <td>Star Wars (1977)</td>\n",
" <td>Action, Adventure, Romance, Sci-Fi, War</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7163</th>\n",
" <td>599.0</td>\n",
" <td>2</td>\n",
" <td>Fargo (1996)</td>\n",
" <td>Crime, Drama, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2874</th>\n",
" <td>599.0</td>\n",
" <td>3</td>\n",
" <td>Return of the Jedi (1983)</td>\n",
" <td>Action, Adventure, Romance, Sci-Fi, War</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4627</th>\n",
" <td>599.0</td>\n",
" <td>4</td>\n",
" <td>Air Force One (1997)</td>\n",
" <td>Action, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5873</th>\n",
" <td>599.0</td>\n",
" <td>5</td>\n",
" <td>Contact (1997)</td>\n",
" <td>Drama, Sci-Fi</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8551</th>\n",
" <td>599.0</td>\n",
" <td>6</td>\n",
" <td>Independence Day (ID4) (1996)</td>\n",
" <td>Action, Sci-Fi, War</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1189</th>\n",
" <td>599.0</td>\n",
" <td>7</td>\n",
" <td>English Patient, The (1996)</td>\n",
" <td>Drama, Romance, War</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8274</th>\n",
" <td>599.0</td>\n",
" <td>8</td>\n",
" <td>Mr. Holland's Opus (1995)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7633</th>\n",
" <td>599.0</td>\n",
" <td>9</td>\n",
" <td>Rock, The (1996)</td>\n",
" <td>Action, Adventure, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2464</th>\n",
" <td>599.0</td>\n",
" <td>10</td>\n",
" <td>Godfather, The (1972)</td>\n",
" <td>Action, Crime, Drama</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user rec_nb title \\\n",
"262 599.0 1 Star Wars (1977) \n",
"7163 599.0 2 Fargo (1996) \n",
"2874 599.0 3 Return of the Jedi (1983) \n",
"4627 599.0 4 Air Force One (1997) \n",
"5873 599.0 5 Contact (1997) \n",
"8551 599.0 6 Independence Day (ID4) (1996) \n",
"1189 599.0 7 English Patient, The (1996) \n",
"8274 599.0 8 Mr. Holland's Opus (1995) \n",
"7633 599.0 9 Rock, The (1996) \n",
"2464 599.0 10 Godfather, The (1972) \n",
"\n",
" genres \n",
"262 Action, Adventure, Romance, Sci-Fi, War \n",
"7163 Crime, Drama, Thriller \n",
"2874 Action, Adventure, Romance, Sci-Fi, War \n",
"4627 Action, Thriller \n",
"5873 Drama, Sci-Fi \n",
"8551 Action, Sci-Fi, War \n",
"1189 Drama, Romance, War \n",
"8274 Drama \n",
"7633 Action, Adventure, Thriller \n",
"2464 Action, Crime, Drama "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train = pd.read_csv(\n",
" \"./Datasets/ml-100k/train.csv\",\n",
" sep=\"\\t\",\n",
" header=None,\n",
" names=[\"user\", \"item\", \"rating\", \"timestamp\"],\n",
")\n",
"items = pd.read_csv(\"./Datasets/ml-100k/movies.csv\")\n",
"\n",
"user = random.choice(list(set(train[\"user\"])))\n",
"\n",
"train_content = pd.merge(train, items, left_on=\"item\", right_on=\"id\")\n",
"display(\n",
" train_content[train_content[\"user\"] == user][\n",
" [\"user\", \"rating\", \"title\", \"genres\"]\n",
" ].sort_values(by=\"rating\", ascending=False)[:15]\n",
")\n",
"\n",
"reco = np.loadtxt(\"Recommendations generated/ml-100k/Self_P3_reco.csv\", delimiter=\",\")\n",
"items = pd.read_csv(\"./Datasets/ml-100k/movies.csv\")\n",
"\n",
"# Let's ignore scores - they are not used in evaluation:\n",
"reco_users = reco[:, :1]\n",
"reco_items = reco[:, 1::2]\n",
"# Let's put them into one array\n",
"reco = np.concatenate((reco_users, reco_items), axis=1)\n",
"\n",
"# Let's rebuild it user-item dataframe\n",
"recommended = []\n",
"for row in reco:\n",
" for rec_nb, entry in enumerate(row[1:]):\n",
" recommended.append((row[0], rec_nb + 1, entry))\n",
"recommended = pd.DataFrame(recommended, columns=[\"user\", \"rec_nb\", \"item\"])\n",
"\n",
"recommended_content = pd.merge(recommended, items, left_on=\"item\", right_on=\"id\")\n",
"recommended_content[recommended_content[\"user\"] == user][\n",
" [\"user\", \"rec_nb\", \"title\", \"genres\"]\n",
"].sort_values(by=\"rec_nb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# project task 5: generate recommendations of RP3Beta for hyperparameters found to optimize recall"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# We generated recommendations for P3, a special case of RP3Beta (with alpha=1, beta=0).\n",
"# We've observed that changing alpha and beta impacts the model performance.\n",
"\n",
2021-05-08 11:46:21 +02:00
"# Your task is find values alpha and beta for which recall will be the highest \n",
"# (any solution with recall higher than P3 will be accepted)\n",
"# train the model and generate recommendations.\n",
2021-05-07 22:16:28 +02:00
"\n",
"# save the outptut in 'Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv'\n",
"# and 'Recommendations generated/ml-100k/Self_RP3Beta_reco.csv'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# project task 6 (optional): implement graph-based model of your choice "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# for example change length of paths in RP3beta or make some other modification (but change more than input and hyperparameters)\n",
"# feel free to implement your idea or search for some ideas\n",
"\n",
"# save the outptut in 'Recommendations generated/ml-100k/Self_GraphTask_estimations.csv'\n",
"# and 'Recommendations generated/ml-100k/Self_GraphTask_reco.csv'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}