WSS-project/P2. Evaluation.ipynb

1815 lines
58 KiB
Plaintext
Raw Normal View History

2021-03-20 20:01:22 +01:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare test set"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import scipy.sparse as sparse\n",
"from collections import defaultdict\n",
"from itertools import chain\n",
"import random\n",
"from tqdm import tqdm\n",
"\n",
"# In evaluation we do not load train set - it is not needed\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"test.columns=['user', 'item', 'rating', 'timestamp']\n",
"\n",
"test['user_code'] = test['user'].astype(\"category\").cat.codes\n",
"test['item_code'] = test['item'].astype(\"category\").cat.codes\n",
"\n",
"user_code_id = dict(enumerate(test['user'].astype(\"category\").cat.categories))\n",
"user_id_code = dict((v, k) for k, v in user_code_id.items())\n",
"item_code_id = dict(enumerate(test['item'].astype(\"category\").cat.categories))\n",
"item_id_code = dict((v, k) for k, v in item_code_id.items())\n",
"\n",
"test_ui = sparse.csr_matrix((test['rating'], (test['user_code'], test['item_code'])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimations metrics"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"estimations_df=pd.read_csv('Recommendations generated/ml-100k/Ready_Baseline_estimations.csv', header=None)\n",
"estimations_df.columns=['user', 'item' ,'score']\n",
"\n",
"estimations_df['user_code']=[user_id_code[user] for user in estimations_df['user']]\n",
"estimations_df['item_code']=[item_id_code[item] for item in estimations_df['item']]\n",
"estimations=sparse.csr_matrix((estimations_df['score'], (estimations_df['user_code'], estimations_df['item_code'])), shape=test_ui.shape)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def estimations_metrics(test_ui, estimations):\n",
" result=[]\n",
"\n",
" RMSE=(np.sum((estimations.data-test_ui.data)**2)/estimations.nnz)**(1/2)\n",
" result.append(['RMSE', RMSE])\n",
"\n",
" MAE=np.sum(abs(estimations.data-test_ui.data))/estimations.nnz\n",
" result.append(['MAE', MAE])\n",
" \n",
" df_result=(pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns=list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" RMSE MAE\n",
"0 0.949459 0.752487"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in case of error (in the laboratories) you might have to switch to the other version of pandas\n",
"# try !pip3 install pandas=='1.0.3' (or pip if you use python 2) and restart the kernel\n",
"\n",
"estimations_metrics(test_ui, estimations)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ranking metrics"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[663, 475, 62, ..., 472, 269, 503],\n",
" [ 48, 313, 475, ..., 591, 175, 466],\n",
" [351, 313, 475, ..., 591, 175, 466],\n",
" ...,\n",
" [259, 313, 475, ..., 11, 591, 175],\n",
" [ 33, 313, 475, ..., 11, 591, 175],\n",
" [ 77, 313, 475, ..., 11, 591, 175]])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"reco = np.loadtxt('Recommendations generated/ml-100k/Ready_Baseline_reco.csv', delimiter=',')\n",
"# Let's ignore scores - they are not used in evaluation: \n",
"users=reco[:,:1]\n",
"items=reco[:,1::2]\n",
"# Let's use inner ids instead of real ones\n",
"users=np.vectorize(lambda x: user_id_code.setdefault(x, -1))(users)\n",
"items=np.vectorize(lambda x: item_id_code.setdefault(x, -1))(items) # maybe items we recommend are not in test set\n",
"# Let's put them into one array\n",
"reco=np.concatenate((users, items), axis=1)\n",
"reco"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def ranking_metrics(test_ui, reco, super_reactions=[], topK=10):\n",
" \n",
" nb_items=test_ui.shape[1]\n",
" relevant_users, super_relevant_users, prec, rec, F_1, F_05, prec_super, rec_super, ndcg, mAP, MRR, LAUC, HR=\\\n",
" 0,0,0,0,0,0,0,0,0,0,0,0,0\n",
" \n",
" cg = (1.0 / np.log2(np.arange(2, topK + 2)))\n",
" cg_sum = np.cumsum(cg)\n",
" \n",
" for (nb_user, user) in tqdm(enumerate(reco[:,0])):\n",
" u_rated_items=test_ui.indices[test_ui.indptr[user]:test_ui.indptr[user+1]]\n",
" nb_u_rated_items=len(u_rated_items)\n",
" if nb_u_rated_items>0: # skip users with no items in test set (still possible that there will be no super items)\n",
" relevant_users+=1\n",
" \n",
" u_super_items=u_rated_items[np.vectorize(lambda x: x in super_reactions)\\\n",
" (test_ui.data[test_ui.indptr[user]:test_ui.indptr[user+1]])]\n",
" # more natural seems u_super_items=[item for item in u_rated_items if test_ui[user,item] in super_reactions]\n",
" # but accesing test_ui[user,item] is expensive -we should avoid doing it\n",
" if len(u_super_items)>0:\n",
" super_relevant_users+=1\n",
" \n",
" user_successes=np.zeros(topK)\n",
" nb_user_successes=0\n",
" user_super_successes=np.zeros(topK)\n",
" nb_user_super_successes=0\n",
" \n",
" # evaluation\n",
" for (item_position,item) in enumerate(reco[nb_user,1:topK+1]):\n",
" if item in u_rated_items:\n",
" user_successes[item_position]=1\n",
" nb_user_successes+=1\n",
" if item in u_super_items:\n",
" user_super_successes[item_position]=1\n",
" nb_user_super_successes+=1\n",
" \n",
" prec_u=nb_user_successes/topK \n",
" prec+=prec_u\n",
" \n",
" rec_u=nb_user_successes/nb_u_rated_items\n",
" rec+=rec_u\n",
" \n",
" F_1+=2*(prec_u*rec_u)/(prec_u+rec_u) if prec_u+rec_u>0 else 0\n",
" F_05+=(0.5**2+1)*(prec_u*rec_u)/(0.5**2*prec_u+rec_u) if prec_u+rec_u>0 else 0\n",
" \n",
" prec_super+=nb_user_super_successes/topK\n",
" rec_super+=nb_user_super_successes/max(len(u_super_items),1) # to set 0 if no super items\n",
" ndcg+=np.dot(user_successes,cg)/cg_sum[min(topK, nb_u_rated_items)-1]\n",
" \n",
" cumsum_successes=np.cumsum(user_successes)\n",
" mAP+=np.dot(cumsum_successes/np.arange(1,topK+1), user_successes)/min(topK, nb_u_rated_items)\n",
" MRR+=1/(user_successes.nonzero()[0][0]+1) if user_successes.nonzero()[0].size>0 else 0\n",
" LAUC+=(np.dot(cumsum_successes, 1-user_successes)+\\\n",
" (nb_user_successes+nb_u_rated_items)/2*((nb_items-nb_u_rated_items)-(topK-nb_user_successes)))/\\\n",
" ((nb_items-nb_u_rated_items)*nb_u_rated_items)\n",
" \n",
" HR+=nb_user_successes>0\n",
" \n",
" \n",
" result=[]\n",
" result.append(('precision', prec/relevant_users))\n",
" result.append(('recall', rec/relevant_users))\n",
" result.append(('F_1', F_1/relevant_users))\n",
" result.append(('F_05', F_05/relevant_users))\n",
" result.append(('precision_super', prec_super/super_relevant_users))\n",
" result.append(('recall_super', rec_super/super_relevant_users))\n",
" result.append(('NDCG', ndcg/relevant_users))\n",
" result.append(('mAP', mAP/relevant_users))\n",
" result.append(('MRR', MRR/relevant_users))\n",
" result.append(('LAUC', LAUC/relevant_users))\n",
" result.append(('HR', HR/relevant_users))\n",
"\n",
" df_result=(pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns=list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2021-03-26 21:00:52 +01:00
"943it [00:00, 7783.14it/s]\n"
2021-03-20 20:01:22 +01:00
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.09141</td>\n",
" <td>0.037652</td>\n",
" <td>0.04603</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" precision recall F_1 F_05 precision_super recall_super \\\n",
"0 0.09141 0.037652 0.04603 0.061286 0.079614 0.056463 \n",
"\n",
" NDCG mAP MRR LAUC HR \n",
"0 0.095957 0.043178 0.198193 0.515501 0.437964 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ranking_metrics(test_ui, reco, super_reactions=[4,5], topK=10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Diversity metrics"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def diversity_metrics(test_ui, reco, topK=10):\n",
" \n",
" frequencies=defaultdict(int)\n",
" \n",
" # let's assign 0 to all items in test set\n",
" for item in list(set(test_ui.indices)):\n",
" frequencies[item]=0\n",
" \n",
" # counting frequencies\n",
" for item in reco[:,1:].flat:\n",
" frequencies[item]+=1\n",
" \n",
" nb_reco_outside_test=frequencies[-1]\n",
" del frequencies[-1]\n",
" \n",
" frequencies=np.array(list(frequencies.values()))\n",
" \n",
" nb_rec_items=len(frequencies[frequencies>0])\n",
" nb_reco_inside_test=np.sum(frequencies)\n",
" \n",
" frequencies=frequencies/np.sum(frequencies)\n",
" frequencies=np.sort(frequencies)\n",
" \n",
" with np.errstate(divide='ignore'): # let's put zeros put items with 0 frequency and ignore division warning\n",
" log_frequencies=np.nan_to_num(np.log(frequencies), posinf=0, neginf=0)\n",
" \n",
" result=[]\n",
" result.append(('Reco in test', nb_reco_inside_test/(nb_reco_inside_test+nb_reco_outside_test)))\n",
" result.append(('Test coverage', nb_rec_items/test_ui.shape[1]))\n",
" result.append(('Shannon', -np.dot(frequencies, log_frequencies)))\n",
" result.append(('Gini', np.dot(frequencies, np.arange(1-len(frequencies), len(frequencies), 2))/(len(frequencies)-1)))\n",
" \n",
" df_result=(pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns=list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Reco in test Test coverage Shannon Gini\n",
"0 1.0 0.033911 2.836513 0.991139"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in case of errors try !pip3 install numpy==1.18.4 (or pip if you use python 2) and restart the kernel\n",
"\n",
"import evaluation_measures as ev\n",
"import imp\n",
"imp.reload(ev)\n",
"\n",
"x=diversity_metrics(test_ui, reco, topK=10)\n",
"x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# To be used in other notebooks"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2021-03-26 21:00:52 +01:00
"943it [00:00, 7347.78it/s]\n"
2021-03-20 20:01:22 +01:00
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.09141</td>\n",
" <td>0.037652</td>\n",
" <td>0.04603</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>1.0</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" RMSE MAE precision recall F_1 F_05 \\\n",
"0 0.949459 0.752487 0.09141 0.037652 0.04603 0.061286 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 \n",
"\n",
" HR Reco in test Test coverage Shannon Gini \n",
"0 0.437964 1.0 0.033911 2.836513 0.991139 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import evaluation_measures as ev\n",
"import imp\n",
"imp.reload(ev)\n",
"\n",
"estimations_df=pd.read_csv('Recommendations generated/ml-100k/Ready_Baseline_estimations.csv', header=None)\n",
"reco=np.loadtxt('Recommendations generated/ml-100k/Ready_Baseline_reco.csv', delimiter=',')\n",
"\n",
"ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None),\n",
" estimations_df=estimations_df, \n",
" reco=reco,\n",
" super_reactions=[4,5])\n",
"#also you can just type ev.evaluate_all(estimations_df, reco) - I put above values as default"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2021-03-26 21:00:52 +01:00
"943it [00:00, 4894.39it/s]\n",
"943it [00:00, 4357.39it/s]\n",
"943it [00:00, 5045.11it/s]\n",
"943it [00:00, 4855.03it/s]\n",
"943it [00:00, 5359.75it/s]\n"
2021-03-20 20:01:22 +01:00
]
}
],
"source": [
"import evaluation_measures as ev\n",
"import imp\n",
"imp.reload(ev)\n",
"\n",
"dir_path=\"Recommendations generated/ml-100k/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"\n",
"df=ev.evaluate_all(test, dir_path, super_reactions)\n",
"#also you can just type ev.evaluate_all() - I put above values as default"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>2.508258</td>\n",
" <td>2.217909</td>\n",
" <td>0.188865</td>\n",
" <td>0.116919</td>\n",
" <td>0.118732</td>\n",
" <td>0.141584</td>\n",
" <td>0.130472</td>\n",
" <td>0.137473</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.091410</td>\n",
" <td>0.037652</td>\n",
" <td>0.046030</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
2021-03-23 21:52:46 +01:00
" <td>Ready_Random</td>\n",
2021-03-26 21:00:52 +01:00
" <td>1.523899</td>\n",
" <td>1.226799</td>\n",
" <td>0.046872</td>\n",
" <td>0.022367</td>\n",
" <td>0.025297</td>\n",
" <td>0.032269</td>\n",
" <td>0.031116</td>\n",
" <td>0.027843</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
2021-03-23 21:52:46 +01:00
" <td>Self_TopRated</td>\n",
" <td>1.030712</td>\n",
" <td>0.820904</td>\n",
" <td>0.000954</td>\n",
" <td>0.000188</td>\n",
" <td>0.000298</td>\n",
" <td>0.000481</td>\n",
" <td>0.000644</td>\n",
" <td>0.000223</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.967585</td>\n",
" <td>0.762740</td>\n",
" <td>0.000954</td>\n",
" <td>0.000170</td>\n",
" <td>0.000278</td>\n",
" <td>0.000463</td>\n",
" <td>0.000644</td>\n",
" <td>0.000189</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
2021-03-20 20:13:28 +01:00
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
2021-03-26 21:00:52 +01:00
"0 Ready_Random 1.523899 1.226799 0.046872 0.022367 0.025297 \n",
2021-03-23 21:52:46 +01:00
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
2021-03-20 20:13:28 +01:00
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
2021-03-20 20:01:22 +01:00
"\n",
2021-03-20 20:13:28 +01:00
" F_05 precision_super recall_super \n",
"0 0.141584 0.130472 0.137473 \n",
"0 0.061286 0.079614 0.056463 \n",
2021-03-26 21:00:52 +01:00
"0 0.032269 0.031116 0.027843 \n",
2021-03-23 21:52:46 +01:00
"0 0.000481 0.000644 0.000223 \n",
2021-03-20 20:13:28 +01:00
"0 0.000463 0.000644 0.000189 "
2021-03-20 20:01:22 +01:00
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:,:9]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>0.214651</td>\n",
" <td>0.111707</td>\n",
" <td>0.400939</td>\n",
" <td>0.555546</td>\n",
" <td>0.765642</td>\n",
" <td>1.000000</td>\n",
" <td>0.038961</td>\n",
" <td>3.159079</td>\n",
" <td>0.987317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>1.000000</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
2021-03-23 21:52:46 +01:00
" <td>Ready_Random</td>\n",
2021-03-26 21:00:52 +01:00
" <td>0.051414</td>\n",
" <td>0.019769</td>\n",
" <td>0.127558</td>\n",
" <td>0.507696</td>\n",
" <td>0.332980</td>\n",
2021-03-23 21:52:46 +01:00
" <td>0.987593</td>\n",
2021-03-26 21:00:52 +01:00
" <td>0.184704</td>\n",
" <td>5.104710</td>\n",
" <td>0.906035</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
2021-03-23 21:52:46 +01:00
" <td>Self_TopRated</td>\n",
" <td>0.001043</td>\n",
" <td>0.000335</td>\n",
" <td>0.003348</td>\n",
" <td>0.496433</td>\n",
" <td>0.009544</td>\n",
" <td>0.699046</td>\n",
" <td>0.005051</td>\n",
" <td>1.945910</td>\n",
" <td>0.995669</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.000752</td>\n",
" <td>0.000168</td>\n",
" <td>0.001677</td>\n",
" <td>0.496424</td>\n",
" <td>0.009544</td>\n",
" <td>0.600530</td>\n",
" <td>0.005051</td>\n",
" <td>1.803126</td>\n",
" <td>0.996380</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
2021-03-20 20:13:28 +01:00
" Model NDCG mAP MRR LAUC HR \\\n",
"0 Self_TopPop 0.214651 0.111707 0.400939 0.555546 0.765642 \n",
"0 Ready_Baseline 0.095957 0.043178 0.198193 0.515501 0.437964 \n",
2021-03-26 21:00:52 +01:00
"0 Ready_Random 0.051414 0.019769 0.127558 0.507696 0.332980 \n",
2021-03-23 21:52:46 +01:00
"0 Self_TopRated 0.001043 0.000335 0.003348 0.496433 0.009544 \n",
2021-03-20 20:13:28 +01:00
"0 Self_BaselineUI 0.000752 0.000168 0.001677 0.496424 0.009544 \n",
2021-03-20 20:01:22 +01:00
"\n",
" Reco in test Test coverage Shannon Gini \n",
"0 1.000000 0.038961 3.159079 0.987317 \n",
"0 1.000000 0.033911 2.836513 0.991139 \n",
2021-03-26 21:00:52 +01:00
"0 0.987593 0.184704 5.104710 0.906035 \n",
2021-03-23 21:52:46 +01:00
"0 0.699046 0.005051 1.945910 0.995669 \n",
2021-03-20 20:13:28 +01:00
"0 0.600530 0.005051 1.803126 0.996380 "
2021-03-20 20:01:22 +01:00
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:,np.append(0,np.arange(9, df.shape[1]))]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check metrics on toy dataset"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2021-03-26 21:00:52 +01:00
"3it [00:00, 4226.71it/s]\n"
2021-03-20 20:01:22 +01:00
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>1.612452</td>\n",
" <td>1.4</td>\n",
" <td>0.444444</td>\n",
" <td>0.888889</td>\n",
" <td>0.555556</td>\n",
" <td>0.478632</td>\n",
" <td>0.333333</td>\n",
" <td>0.75</td>\n",
" <td>0.676907</td>\n",
" <td>0.574074</td>\n",
" <td>0.611111</td>\n",
" <td>0.638889</td>\n",
" <td>1.0</td>\n",
" <td>0.888889</td>\n",
" <td>0.8</td>\n",
" <td>1.386294</td>\n",
" <td>0.25</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 F_05 \\\n",
"0 Self_BaselineUI 1.612452 1.4 0.444444 0.888889 0.555556 0.478632 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC HR \\\n",
"0 0.333333 0.75 0.676907 0.574074 0.611111 0.638889 1.0 \n",
"\n",
" Reco in test Test coverage Shannon Gini \n",
"0 0.888889 0.8 1.386294 0.25 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training data:\n"
]
},
{
"data": {
"text/plain": [
"matrix([[3, 4, 0, 0, 5, 0, 0, 4],\n",
" [0, 1, 2, 3, 0, 0, 0, 0],\n",
" [0, 0, 0, 5, 0, 3, 4, 0]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test data:\n"
]
},
{
"data": {
"text/plain": [
"matrix([[0, 0, 0, 0, 0, 0, 3, 0],\n",
" [0, 0, 0, 0, 5, 0, 0, 0],\n",
" [5, 0, 4, 0, 0, 0, 0, 2]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recommendations:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>30</td>\n",
" <td>5.0</td>\n",
" <td>20</td>\n",
" <td>4.0</td>\n",
" <td>60</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10</td>\n",
" <td>40</td>\n",
" <td>3.0</td>\n",
" <td>60</td>\n",
" <td>2.0</td>\n",
" <td>70</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>20</td>\n",
" <td>40</td>\n",
" <td>5.0</td>\n",
" <td>20</td>\n",
" <td>4.0</td>\n",
" <td>70</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 5 6\n",
"0 0 30 5.0 20 4.0 60 4.0\n",
"1 10 40 3.0 60 2.0 70 2.0\n",
"2 20 40 5.0 20 4.0 70 4.0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimations:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>item</th>\n",
" <th>est_score</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>60</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10</td>\n",
" <td>40</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>20</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>20</td>\n",
" <td>20</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20</td>\n",
" <td>70</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user item est_score\n",
"0 0 60 4.0\n",
"1 10 40 3.0\n",
"2 20 0 3.0\n",
"3 20 20 4.0\n",
"4 20 70 4.0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import evaluation_measures as ev\n",
"import imp\n",
"import helpers\n",
"imp.reload(ev)\n",
"\n",
"dir_path=\"Recommendations generated/toy-example/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None)\n",
"\n",
"display(ev.evaluate_all(test, dir_path, super_reactions, topK=3))\n",
"#also you can just type ev.evaluate_all() - I put above values as default\n",
"\n",
"toy_train_read=pd.read_csv('./Datasets/toy-example/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"toy_test_read=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"reco=pd.read_csv('Recommendations generated/toy-example/Self_BaselineUI_reco.csv', header=None)\n",
"estimations=pd.read_csv('Recommendations generated/toy-example/Self_BaselineUI_estimations.csv', names=['user', 'item', 'est_score'])\n",
"toy_train_ui, toy_test_ui, toy_user_code_id, toy_user_id_code, \\\n",
"toy_item_code_id, toy_item_id_code = helpers.data_to_csr(toy_train_read, toy_test_read)\n",
"\n",
"print('Training data:')\n",
"display(toy_train_ui.todense())\n",
"\n",
"print('Test data:')\n",
"display(toy_test_ui.todense())\n",
"\n",
"print('Recommendations:')\n",
"display(reco)\n",
"\n",
"print('Estimations:')\n",
"display(estimations)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sample recommendations"
]
},
{
"cell_type": "code",
2021-03-20 20:13:28 +01:00
"execution_count": 15,
2021-03-20 20:01:22 +01:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here is what user rated high:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>rating</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>54092</th>\n",
" <td>365</td>\n",
2021-03-20 20:01:22 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Boogie Nights (1997)</td>\n",
2021-03-23 21:52:46 +01:00
" <td>Drama</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>55243</th>\n",
" <td>365</td>\n",
2021-03-20 20:01:22 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Celluloid Closet, The (1995)</td>\n",
" <td>Documentary</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>21637</th>\n",
" <td>365</td>\n",
2021-03-20 20:01:22 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>In &amp; Out (1997)</td>\n",
" <td>Comedy</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>36508</th>\n",
" <td>365</td>\n",
2021-03-20 20:01:22 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Swingers (1996)</td>\n",
" <td>Comedy, Drama</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>19398</th>\n",
" <td>365</td>\n",
2021-03-20 20:01:22 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Scream (1996)</td>\n",
" <td>Horror, Thriller</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>14343</th>\n",
" <td>365</td>\n",
2021-03-23 21:52:46 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Fargo (1996)</td>\n",
" <td>Crime, Drama, Thriller</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>23738</th>\n",
" <td>365</td>\n",
2021-03-23 21:52:46 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Chasing Amy (1997)</td>\n",
" <td>Drama, Romance</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>69960</th>\n",
" <td>365</td>\n",
2021-03-23 21:52:46 +01:00
" <td>5</td>\n",
2021-03-26 21:00:52 +01:00
" <td>Beautiful Thing (1996)</td>\n",
" <td>Drama, Romance</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>54753</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>Scream 2 (1997)</td>\n",
" <td>Horror, Thriller</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>54552</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>Sense and Sensibility (1995)</td>\n",
" <td>Drama, Romance</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>30051</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>Star Trek: First Contact (1996)</td>\n",
" <td>Action, Adventure, Sci-Fi</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>47086</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>Primal Fear (1996)</td>\n",
" <td>Drama, Thriller</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>62931</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>James and the Giant Peach (1996)</td>\n",
" <td>Animation, Children's, Musical</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>38939</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>Full Monty, The (1997)</td>\n",
" <td>Comedy</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>38764</th>\n",
" <td>365</td>\n",
" <td>4</td>\n",
" <td>First Wives Club, The (1996)</td>\n",
" <td>Comedy</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
2021-03-26 21:00:52 +01:00
" user rating title \\\n",
"54092 365 5 Boogie Nights (1997) \n",
"55243 365 5 Celluloid Closet, The (1995) \n",
"21637 365 5 In & Out (1997) \n",
"36508 365 5 Swingers (1996) \n",
"19398 365 5 Scream (1996) \n",
"14343 365 5 Fargo (1996) \n",
"23738 365 5 Chasing Amy (1997) \n",
"69960 365 5 Beautiful Thing (1996) \n",
"54753 365 4 Scream 2 (1997) \n",
"54552 365 4 Sense and Sensibility (1995) \n",
"30051 365 4 Star Trek: First Contact (1996) \n",
"47086 365 4 Primal Fear (1996) \n",
"62931 365 4 James and the Giant Peach (1996) \n",
"38939 365 4 Full Monty, The (1997) \n",
"38764 365 4 First Wives Club, The (1996) \n",
2021-03-20 20:01:22 +01:00
"\n",
2021-03-26 21:00:52 +01:00
" genres \n",
"54092 Drama \n",
"55243 Documentary \n",
"21637 Comedy \n",
"36508 Comedy, Drama \n",
"19398 Horror, Thriller \n",
"14343 Crime, Drama, Thriller \n",
"23738 Drama, Romance \n",
"69960 Drama, Romance \n",
"54753 Horror, Thriller \n",
"54552 Drama, Romance \n",
"30051 Action, Adventure, Sci-Fi \n",
"47086 Drama, Thriller \n",
"62931 Animation, Children's, Musical \n",
"38939 Comedy \n",
"38764 Comedy "
2021-03-20 20:01:22 +01:00
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here is what we recommend:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>rec_nb</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>363</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:01:22 +01:00
" <td>1</td>\n",
" <td>Great Day in Harlem, A (1994)</td>\n",
" <td>Documentary</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>1305</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:01:22 +01:00
" <td>2</td>\n",
" <td>Tough and Deadly (1995)</td>\n",
" <td>Action, Drama, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>2248</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:01:22 +01:00
" <td>3</td>\n",
" <td>Aiqing wansui (1994)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>3189</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:01:22 +01:00
" <td>4</td>\n",
" <td>Delta of Venus (1994)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>4132</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:01:22 +01:00
" <td>5</td>\n",
2021-03-20 20:13:28 +01:00
" <td>Someone Else's America (1995)</td>\n",
2021-03-20 20:01:22 +01:00
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>5073</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:01:22 +01:00
" <td>6</td>\n",
2021-03-20 20:13:28 +01:00
" <td>Saint of Fort Washington, The (1993)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>6015</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:13:28 +01:00
" <td>7</td>\n",
2021-03-20 20:01:22 +01:00
" <td>Celestial Clockwork (1994)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>6958</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:13:28 +01:00
" <td>8</td>\n",
2021-03-20 20:01:22 +01:00
" <td>Some Mother's Son (1996)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>8852</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:13:28 +01:00
" <td>9</td>\n",
2021-03-20 20:01:22 +01:00
" <td>Maya Lin: A Strong Clear Vision (1994)</td>\n",
" <td>Documentary</td>\n",
" </tr>\n",
" <tr>\n",
2021-03-26 21:00:52 +01:00
" <th>7898</th>\n",
" <td>365.0</td>\n",
2021-03-20 20:13:28 +01:00
" <td>10</td>\n",
2021-03-20 20:01:22 +01:00
" <td>Prefontaine (1997)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user rec_nb title \\\n",
2021-03-26 21:00:52 +01:00
"363 365.0 1 Great Day in Harlem, A (1994) \n",
"1305 365.0 2 Tough and Deadly (1995) \n",
"2248 365.0 3 Aiqing wansui (1994) \n",
"3189 365.0 4 Delta of Venus (1994) \n",
"4132 365.0 5 Someone Else's America (1995) \n",
"5073 365.0 6 Saint of Fort Washington, The (1993) \n",
"6015 365.0 7 Celestial Clockwork (1994) \n",
"6958 365.0 8 Some Mother's Son (1996) \n",
"8852 365.0 9 Maya Lin: A Strong Clear Vision (1994) \n",
"7898 365.0 10 Prefontaine (1997) \n",
2021-03-20 20:01:22 +01:00
"\n",
" genres \n",
2021-03-26 21:00:52 +01:00
"363 Documentary \n",
"1305 Action, Drama, Thriller \n",
"2248 Drama \n",
"3189 Drama \n",
"4132 Drama \n",
"5073 Drama \n",
"6015 Comedy \n",
"6958 Drama \n",
"8852 Documentary \n",
"7898 Drama "
2021-03-20 20:01:22 +01:00
]
},
2021-03-20 20:13:28 +01:00
"execution_count": 15,
2021-03-20 20:01:22 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"items=pd.read_csv('./Datasets/ml-100k/movies.csv')\n",
"\n",
"user=random.choice(list(set(train['user'])))\n",
"\n",
"train_content=pd.merge(train, items, left_on='item', right_on='id')\n",
"\n",
"print('Here is what user rated high:')\n",
"display(train_content[train_content['user']==user][['user', 'rating', 'title', 'genres']]\\\n",
" .sort_values(by='rating', ascending=False)[:15])\n",
"\n",
"reco = np.loadtxt('Recommendations generated/ml-100k/Self_BaselineUI_reco.csv', delimiter=',')\n",
"items=pd.read_csv('./Datasets/ml-100k/movies.csv')\n",
"\n",
"# Let's ignore scores - they are not used in evaluation: \n",
"reco_users=reco[:,:1]\n",
"reco_items=reco[:,1::2]\n",
"# Let's put them into one array\n",
"reco=np.concatenate((reco_users, reco_items), axis=1)\n",
"\n",
"# Let's rebuild it user-item dataframe\n",
"recommended=[]\n",
"for row in reco:\n",
" for rec_nb, entry in enumerate(row[1:]):\n",
" recommended.append((row[0], rec_nb+1, entry))\n",
"recommended=pd.DataFrame(recommended, columns=['user','rec_nb', 'item'])\n",
"\n",
"recommended_content=pd.merge(recommended, items, left_on='item', right_on='id')\n",
"\n",
"print('Here is what we recommend:')\n",
"recommended_content[recommended_content['user']==user][['user', 'rec_nb', 'title', 'genres']].sort_values(by='rec_nb')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2021-03-26 21:00:52 +01:00
"# project task 2: implement some other evaluation measure"
2021-03-20 20:01:22 +01:00
]
},
{
"cell_type": "code",
2021-03-20 20:13:28 +01:00
"execution_count": 16,
2021-03-20 20:01:22 +01:00
"metadata": {},
"outputs": [],
"source": [
"# it may be your idea, modification of what we have already implemented \n",
"# (for example Hit2 rate which would count as a success users whoreceived at least 2 relevant recommendations) \n",
"# or something well-known\n",
"# expected output: modification of evaluation_measures.py such that evaluate_all will also display your measure"
]
},
{
"cell_type": "code",
2021-03-20 20:13:28 +01:00
"execution_count": 17,
2021-03-20 20:01:22 +01:00
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2021-03-26 21:00:52 +01:00
"943it [00:00, 4859.65it/s]\n",
"943it [00:00, 4809.91it/s]\n",
"943it [00:00, 4678.68it/s]\n",
"943it [00:00, 3240.04it/s]\n",
"943it [00:00, 4796.98it/s]\n"
2021-03-20 20:01:22 +01:00
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>2.508258</td>\n",
" <td>2.217909</td>\n",
" <td>0.188865</td>\n",
" <td>0.116919</td>\n",
" <td>0.118732</td>\n",
" <td>0.141584</td>\n",
" <td>0.130472</td>\n",
" <td>0.137473</td>\n",
" <td>0.214651</td>\n",
" <td>0.111707</td>\n",
" <td>0.400939</td>\n",
" <td>0.555546</td>\n",
" <td>0.765642</td>\n",
" <td>1.000000</td>\n",
" <td>0.038961</td>\n",
" <td>3.159079</td>\n",
" <td>0.987317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.091410</td>\n",
" <td>0.037652</td>\n",
" <td>0.046030</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>1.000000</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
2021-03-23 21:52:46 +01:00
" <td>Ready_Random</td>\n",
2021-03-26 21:00:52 +01:00
" <td>1.523899</td>\n",
" <td>1.226799</td>\n",
" <td>0.046872</td>\n",
" <td>0.022367</td>\n",
" <td>0.025297</td>\n",
" <td>0.032269</td>\n",
" <td>0.031116</td>\n",
" <td>0.027843</td>\n",
" <td>0.051414</td>\n",
" <td>0.019769</td>\n",
" <td>0.127558</td>\n",
" <td>0.507696</td>\n",
" <td>0.332980</td>\n",
2021-03-23 21:52:46 +01:00
" <td>0.987593</td>\n",
2021-03-26 21:00:52 +01:00
" <td>0.184704</td>\n",
" <td>5.104710</td>\n",
" <td>0.906035</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
2021-03-23 21:52:46 +01:00
" <td>Self_TopRated</td>\n",
" <td>1.030712</td>\n",
" <td>0.820904</td>\n",
" <td>0.000954</td>\n",
" <td>0.000188</td>\n",
" <td>0.000298</td>\n",
" <td>0.000481</td>\n",
" <td>0.000644</td>\n",
" <td>0.000223</td>\n",
" <td>0.001043</td>\n",
" <td>0.000335</td>\n",
" <td>0.003348</td>\n",
" <td>0.496433</td>\n",
" <td>0.009544</td>\n",
" <td>0.699046</td>\n",
" <td>0.005051</td>\n",
" <td>1.945910</td>\n",
" <td>0.995669</td>\n",
2021-03-20 20:01:22 +01:00
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.967585</td>\n",
" <td>0.762740</td>\n",
" <td>0.000954</td>\n",
" <td>0.000170</td>\n",
" <td>0.000278</td>\n",
" <td>0.000463</td>\n",
" <td>0.000644</td>\n",
" <td>0.000189</td>\n",
" <td>0.000752</td>\n",
" <td>0.000168</td>\n",
" <td>0.001677</td>\n",
" <td>0.496424</td>\n",
" <td>0.009544</td>\n",
" <td>0.600530</td>\n",
" <td>0.005051</td>\n",
" <td>1.803126</td>\n",
" <td>0.996380</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
2021-03-20 20:13:28 +01:00
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
2021-03-26 21:00:52 +01:00
"0 Ready_Random 1.523899 1.226799 0.046872 0.022367 0.025297 \n",
2021-03-23 21:52:46 +01:00
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
2021-03-20 20:13:28 +01:00
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
2021-03-20 20:01:22 +01:00
"\n",
2021-03-20 20:13:28 +01:00
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
2021-03-26 21:00:52 +01:00
"0 0.032269 0.031116 0.027843 0.051414 0.019769 0.127558 \n",
2021-03-23 21:52:46 +01:00
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
2021-03-20 20:13:28 +01:00
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
2021-03-20 20:01:22 +01:00
"\n",
2021-03-20 20:13:28 +01:00
" LAUC HR Reco in test Test coverage Shannon Gini \n",
"0 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317 \n",
"0 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139 \n",
2021-03-26 21:00:52 +01:00
"0 0.507696 0.332980 0.987593 0.184704 5.104710 0.906035 \n",
2021-03-23 21:52:46 +01:00
"0 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669 \n",
2021-03-20 20:13:28 +01:00
"0 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380 "
2021-03-20 20:01:22 +01:00
]
},
2021-03-20 20:13:28 +01:00
"execution_count": 17,
2021-03-20 20:01:22 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir_path=\"Recommendations generated/ml-100k/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}