diff --git a/evaluation_measures.py b/evaluation_measures.py index ced6c1b..315b6e6 100644 --- a/evaluation_measures.py +++ b/evaluation_measures.py @@ -67,8 +67,8 @@ def evaluate(test, def ranking_metrics(test_ui, reco, super_reactions=[], topK=10): nb_items=test_ui.shape[1] - relevant_users, super_relevant_users, prec, rec, F_1, F_05, prec_super, rec_super, ndcg, mAP, MRR, LAUC, HR=\ - 0,0,0,0,0,0,0,0,0,0,0,0,0 + relevant_users, super_relevant_users, prec, rec, F_1, F_05, prec_super, rec_super, ndcg, mAP, MRR, LAUC, HR, HitRate2, HitRate3=\ + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 cg = (1.0 / np.log2(np.arange(2, topK + 2))) cg_sum = np.cumsum(cg) @@ -121,7 +121,10 @@ def ranking_metrics(test_ui, reco, super_reactions=[], topK=10): ((nb_items-nb_u_rated_items)*nb_u_rated_items) HR+=nb_user_successes>0 - + + HitRate2+=nb_user_successes>1 + + HitRate3+=nb_user_successes>2 result=[] result.append(('precision', prec/relevant_users)) @@ -135,6 +138,9 @@ def ranking_metrics(test_ui, reco, super_reactions=[], topK=10): result.append(('MRR', MRR/relevant_users)) result.append(('LAUC', LAUC/relevant_users)) result.append(('HR', HR/relevant_users)) + result.append(('HitRate2', HitRate2/relevant_users)) + result.append(('HitRate3', HitRate3/relevant_users)) + df_result=pd.DataFrame() if len(result)>0: