
Introduction
User and item KNNs in recommender system

Netflix Price
Python implementation

References

Part 3: k-nearest neighbours

Robert Kwieciński

Adam Mickiewicz University

April 17, 2021

Robert Kwieciński Part 3: k-nearest neighbours



k-nearest neighbours algorithm

k-nearest neighbours algorithm

In a basic version:

represent all your training samples in n-dimensional space,

define a distance function between points (for example Euclidean
distance),

choose k ∈ N,

for a given observation in the test set find k observations
(neighbours) from the train set which distance from your
observation is the smallest,

predict value/class of your observation based on values/classes of
your neighbours.

The algorithm is widely used for classification and regression purposes. In
the simplest form there is no parameters and only one hiperparameter -
number of neighbours.



KNN in recommender systems

User-based KNN in recommender systems

Suppose we have m users and n items and we want to predict a rating
rui .

each user is represented by his ratings,

we define a similarity measure sim(u, v) between users - it is
common to take cosine similarity or Pearson coefficient of the
vectors ratings of items rated by both users,

we choose k ∈ N,

we are looking for a set Nk
i (u) of k the most similar users to the

user u who rated movie i

the final prediction is:

r̂ui =

∑
v∈Nk

i (u) sim(u, v)rvi∑
v∈Nk

i (u) sim(u, v)
.



KNN in recommender systems

Item-based KNN in recommender systems

Suppose we have m users and n items and we want to predict a rating
rui .

each item is represented by received ratings,

we define a similarity measure sim(i , j) between items - it is
common to take cosine similarity or Pearson coefficient of the
vectors ratings of items restricted to users who rated both items,

we choose k ∈ N,

we are looking for a set Nk
u (i) of k the most similar items to the

item i which were rated by user u,

the final prediction is:

r̂ui =

∑
j∈Nk

u (i) sim(i , j)ruj∑
j∈Nk

u (i) sim(i , j)
.



Introduction
User and item KNNs in recommender system

Netflix Price
Python implementation

References

Difference between user-based KNN and item-based KNN

User/Item i1 i2 i3 i4 i5

u1 1 0 1 1 0

u2 0 1 1 0

u3 1 0 1 0

u4 1 1 1 1

u5 1 0 1 ? ?

Figure: User-item rating matrix

User-based approach (k=1):

s(u5, u1) = cos([1, 0, 1], [1, 0, 1]) = 1
s(u5, u2) = cos([0, 1], [1, 0]) = 0
s(u5, u3) = 0
s(u5, u4) = 1√

2
r̂u5,i4 = ru1,i4 = 1
r̂u5,i5 = ru1,i5 = 0

Item-based approach (k=1):

s(i4, i1) = cos([1, 1], [0, 1]) = 1√
2
≈ 0.71

s(i4, i2) = 3
2
√

3
≈ 0.87

s(i4, i3) = 2√
6
≈ 0.82

. . .
r̂u5,i4 = ru5,i2 = 0
r̂u5,i5 = ru5,i3 = 1

Robert Kwieciński Part 3: k-nearest neighbours



Some KNN problems

KNN problem - lack of similar users/items

In KNN models it is possible that none of similar users has rated target
film and predicted rating is computed based on not very similar users.

KNN problem - memory demanding

In practice number of users and items might be huge (several millions)
and preserving similarity matrix in memory is expensive. Unfortunately
preserving only top k similar users/items for each item is not enough
(check carefully formulas to answer why).

Solution

Preserve only the most similar users. If they have not rated target movie,
use the prediction of their ratings instead. In [1] MF model was used for
predictions.



Some KNN problems

KNN problem - lack of similar users/items

In KNN models it is possible that none of similar users has rated target
film and predicted rating is computed based on not very similar users.

KNN problem - memory demanding

In practice number of users and items might be huge (several millions)
and preserving similarity matrix in memory is expensive. Unfortunately
preserving only top k similar users/items for each item is not enough
(check carefully formulas to answer why).

Solution

Preserve only the most similar users. If they have not rated target movie,
use the prediction of their ratings instead. In [1] MF model was used for
predictions.



Some KNN problems

KNN problem - lack of similar users/items

In KNN models it is possible that none of similar users has rated target
film and predicted rating is computed based on not very similar users.

KNN problem - memory demanding

In practice number of users and items might be huge (several millions)
and preserving similarity matrix in memory is expensive. Unfortunately
preserving only top k similar users/items for each item is not enough
(check carefully formulas to answer why).

Solution

Preserve only the most similar users. If they have not rated target movie,
use the prediction of their ratings instead. In [1] MF model was used for
predictions.



Similarity measures

Similarity measures used by the winners of the Netflix Prize [2]



KNNMovieV3-2

Models used by the winners of the Netflix Prize competition

Here is an example of k-NN model used in 33 predictors (25 predictors
with simpler approach (ζ = κ = ψ = 1, ν = 0, ϑ =∞)).

KNN models used by the winners of Netflix Prize [2]



Python implementation

To do (especially for absent students):

Go through - P3. k-nearest neighbours notebook to:

check simplified version of I-KNN (where we sum over all neighbours
instead of top k)
observe evaluation measures
run ready-made KNN algorithm implemented in Surprise
read Surprise docs about KNN algorithms here, it is described really
clear
project task 3: use a version of your choice of Surprise KNN
algorithm

https://surprise.readthedocs.io/en/stable/knn_inspired.html##surprise.prediction_algorithms.knns.KNNBaseline


Introduction
User and item KNNs in recommender system

Netflix Price
Python implementation

References

References I

[1] A. Töscher, M. Jahrer, and R. Legenstein, “Improved
neighborhood-based algorithms for large-scale recommender
systems,”, Jan. 2008. doi: 10.1145/1722149.1722153.

[2] A. Töscher and M. Jahrer, “The bigchaos solution to the netflix
grand prize,”, Sep. 2009,
https://www.researchgate.net/publication/223460749_

The_BigChaos_Solution_to_the_Netflix_Grand_Prize.

Robert Kwieciński Part 3: k-nearest neighbours

https://doi.org/10.1145/1722149.1722153
https://www.researchgate.net/publication/223460749_The_BigChaos_Solution_to_the_Netflix_Grand_Prize
https://www.researchgate.net/publication/223460749_The_BigChaos_Solution_to_the_Netflix_Grand_Prize

	Introduction
	User and item KNNs in recommender system
	Netflix Price
	Python implementation
	References

