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Motivation for using hybrid recommender systems

Problems with collaborative models (e.g. classical Matrix Factorization):

cold-start problem for users and items,

ignores user and item features.

Problems with content based approach:

hard to catch dependencies which cannot be deduced from the
content features (maybe the same people buy bikes and chocolate
cakes),

usually worse recommendations quality.

Solution

Hybrid recommender system like LightFM, which utilizes both
collaborative and content data.
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LightFM model

The full description you can read in the original paper [1].
In short words prediction is given by:

r̂ui = qu · pi + bu + bi ,

where qu is the user latent vector, pi is the item latent vector bu is the
user bias, bi is the item bias.

Each user latent vector is a (weighted) sum of feature embeddings of
each of his features.
The same rule applies to items and biases.

For example embedding of the item ”white rabbit” might be a sum of the
embedding of white and the embedding of rabbit.



Example-number of parameters

For our Movielens dataset we will use the following item features:

genre (19 possibilities),

data of release (240 possibilities).

As user features we’ll take:

age (61 possibilities),

sex (2 possibilities),

profession (21 possibilities),

zip-code (795 possibilities).

If we take 10 latent factors for each user/item feature our model will
have:

10 · (19 + 240) = 2590 parameters needed for item latent vectors,

number of item features (259) parameters for item biases,

10 · (61 + 2 + 21 + 795) = 8790 parameters needed for user latent
vectors,

number of user features (879) parameters for user biases.
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LightFM as a generalization of MF

We can treat as a feature being a given user or an item. In this case we
will have:

number of user features equals number of users,

number of item features equals number of items.

Then LightFM model (possibly assuming biases equals 0) reduces to MF
model.

Note that we can combine both types of discussed features.



BPR-OPT definition

In the paper BPR: Bayesian Personalized Ranking from Implicit Feedback
[2] novel optimization criterion was introduced. It could be applied for
various existing models, including Matrix Factorization.

Denote by D the set of all triples (u, i , j), where u interacted with i , but
not interacted with j .

BPR-OPT =
∑

(u,i,j)∈D

lnσ(r̂ui − r̂uj)− λ||Θ||2,

where r̂ui is estimated by a given model and Θ represents the parameter
vector.



BPR-OPT learning

For optimizing BPR-OPT we use the stochastic gradient ascent
algorithm based on bootstrap sampling of training triples.

In simple words:

we choose triple (u, i , j) ∈ D randomly with equal probability for
each triple,

we compute a gradient of BPR-OPT with respect to our model
parameters and update the parameters (gradient ascent),

we repeat these steps until convergence.

In the paper it was shown that optimizing BPR-OPT is similar to
optimizing AUC.
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WARP loss

WARP loss (Weighted Approximately Ranked Pairwise Ranking Loss) is
also designed for ranking optimization by focusing on triples (u, i , j),
where the item i is a positive example for the user u and the item j is a
negative example - for example user u interacted with i , but has not
interacted with j .

The general idea is as follows:

pick a random pair (u, i) where i is a positive example for u,

sample negative items as long as score of sampled negative item j
exceeds r̂ui ,

update model parameters based on a loss function

(r̂uj − r̂ui ) ln(
|I | − 1

N
),

where I is a set of all items and N is a number of samples needed to
find j .

Read some details and properties of WARP implementation in LightFM
[3].
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Python implementation

To do (especially for absent students):

Go through - P7. LightFM notebook to:

check implementation of LightFM model using LightFM library -
especially user and item feature preparations
compare the results using different loss functions
observe evaluation measures for LightFM model with different
features



Passing the course

Preferable form is the copy of the course repository with solutions
added in the Jupyter Notebooks in the place where the given task is
presented.

Each correctly solved task is worth 1 point. In case of mistakes 0,
0.5 or 1 point will be given.

The final grade is:

3 - for 3 points
3.5 - for 3.5 points
4 - for 4 points
4.5 - for 4.5 points
5 - for 5 and more points

Solutions should be sent to robkwi@st.amu.edu.pl with [WSR] in the
title. Please sent just a link to the repository with solutions on
git.wmi.amu.edu.pl. Please remember to give me the access
(robkw).

The deadline is 12.06.2021 (2 weeks after the last meeting).

https://git.wmi.amu.edu.pl/robkw/introduction_to_recommender_systems


List of the tasks

List of the tasks:

project task 1: implement self-made BaselineIU

project task 2: implement some other evaluation measure

project task 3: use a version of your choice of Surprise KNN
algorithm

project task 4: implement SVD on top baseline

project task 5: generate recommendations of RP3Beta for
hyperparameters found to optimize recall

project task 6 (optional): implement graph-based model of your
choice

project task 7 (optional): check how the number of iterations of
WRMF model influence the evaluation metrics

The full description of the tasks can be found in the corresponding
Jupyter Notebooks.
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