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Idea

The matrix factorization model was designed for explicit data and gives
really good results. In the learning procedure only items that the user
interacted with are used.

Of course for implicit feedback we can assume all unspecified ratings to
be zeros and learn our model, but:

in case of RMSE loss function mistakes in estimating zeros (which
we assumed) are then as important as mistakes in estimating ones
(which we know),

optimization through gradient descent might be really slow in case
of sparse datasets.

But the idea of replacing missing entries with zeros is not so bad.
We will see that both problems can be overcome by Weighted
Regularized Matrix Factorization (WRMF) model introduced in [1].
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WRMF model

Denote by rui the ”rating” made by the user u regarding the item i . It
might be the real rating in case of explicit feedback dataset or number of
times user visited the given page in implicit feedback. In case of no
interactions we assume rui = 0. As in the original paper we will call rui
values observations.

Define a confidence of an observation by cui = 1 + αrui , where α is a
hyperparameter.

Also define a preference by: pui=

{
1 if rui > 0,

0 if rui = 0.

Then our cost function is:

min
x∗,y∗

∑
u,i

cui (pui − xTu yi )
2 + λ(

∑
u

||xu||2 +
∑
i

||yi ||2),

where xu is user’s u f -dimensional embedding and yi is item’s i
f -dimensional embedding.



WRMF model

Denote by rui the ”rating” made by the user u regarding the item i . It
might be the real rating in case of explicit feedback dataset or number of
times user visited the given page in implicit feedback. In case of no
interactions we assume rui = 0. As in the original paper we will call rui
values observations.

Define a confidence of an observation by cui = 1 + αrui , where α is a
hyperparameter.

Also define a preference by: pui=

{
1 if rui > 0,

0 if rui = 0.

Then our cost function is:

min
x∗,y∗

∑
u,i

cui (pui − xTu yi )
2 + λ(

∑
u

||xu||2 +
∑
i

||yi ||2),

where xu is user’s u f -dimensional embedding and yi is item’s i
f -dimensional embedding.



WRMF model

Denote by rui the ”rating” made by the user u regarding the item i . It
might be the real rating in case of explicit feedback dataset or number of
times user visited the given page in implicit feedback. In case of no
interactions we assume rui = 0. As in the original paper we will call rui
values observations.

Define a confidence of an observation by cui = 1 + αrui , where α is a
hyperparameter.

Also define a preference by: pui=

{
1 if rui > 0,

0 if rui = 0.

Then our cost function is:

min
x∗,y∗

∑
u,i

cui (pui − xTu yi )
2 + λ(

∑
u

||xu||2 +
∑
i

||yi ||2),

where xu is user’s u f -dimensional embedding and yi is item’s i
f -dimensional embedding.



WRMF model

Denote by rui the ”rating” made by the user u regarding the item i . It
might be the real rating in case of explicit feedback dataset or number of
times user visited the given page in implicit feedback. In case of no
interactions we assume rui = 0. As in the original paper we will call rui
values observations.

Define a confidence of an observation by cui = 1 + αrui , where α is a
hyperparameter.

Also define a preference by: pui=

{
1 if rui > 0,

0 if rui = 0.

Then our cost function is:

min
x∗,y∗

∑
u,i

cui (pui − xTu yi )
2 + λ(

∑
u

||xu||2 +
∑
i

||yi ||2),

where xu is user’s u f -dimensional embedding and yi is item’s i
f -dimensional embedding.



ALS

In our objective function we sum over all (user, item) pairs which in real
use cases can easily exceeds billions.

Alternating least squares procedure assumes that either user or item
latent factors are fixed and we analytically determine the second one,
repeating the procedure few times.
In this case our loss function becomes quadratic and for example for each
user u, vector latent representation xu minimizing the loss function is:

xu = (Y TC uY + λI )−1Y TC up(u),

where C u is a diagonal matrix with C u
ii = cui . Note that

Y TC uY = Y TY + Y T (C u − I )Y ,

and Y TY is independent of u.

It leads to the fact ALS procedure is fast and scales linearly with the size
of the data.
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Python implementation

To do (especially for absent students):

Go through - P6. WRMF (Implicit ALS) notebook to:

check implementation of WRMF model using Implicit library -
Implicit library is really fast,
compare the results using different loss functions,
check the impact of some hyperparameters on evaluation measures.
project task 7: check how number of iterations of WRMF model
influence the evaluation metrics
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Robert Kwieciński Part 6: WRMF: Weighted Regularized Matrix Factorization

https://doi.org/10.1109/ICDM.2008.22

	WRMF
	ALS procedure
	Python implementation
	References

