paranormal-or-skeptic-ISI-p.../.ipynb_checkpoints/solution-checkpoint.ipynb

324 lines
6.6 KiB
Plaintext
Raw Normal View History

2021-05-02 16:26:07 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import patoolib\n",
"import os\n",
"import patoolib\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.naive_bayes import GaussianNB, MultinomialNB\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TRENING"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ROZPAKOWANIE I WCZYTANIE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting train/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- train/in.tsv.xz > train/in.tsv\n",
"patool: with shell=True\n",
"patool: ... train/in.tsv.xz extracted to `train/'.\n"
]
}
],
"source": [
"EXPECTED_FILE = open('train/expected.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"patoolib.extract_archive(\"train/in.tsv.xz\", outdir=\"train/\")\n",
"TRAIN = open('train/in.tsv', 'r', encoding=\"utf-8\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### WRZUCENIE DO ZMIENNYCH"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED = []\n",
"for line in EXPECTED_FILE:\n",
" EXPECTED.append(line)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"TRAIN_DATA = []\n",
"for line in TRAIN:\n",
" TRAIN_DATA.append(line)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ZAMKNIECIE ZMIENNYCH PLIKOW I USUNIECIE ROZPAKOWANIA"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED_FILE.close()\n",
"TRAIN.close()\n",
"#os.remove(\"train/in.tsv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### MODEL TRENINGOWY"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED_ENCODER = LabelEncoder().fit_transform(EXPECTED)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"PIPE = Pipeline(steps=[(\"TF-IDF\",TfidfVectorizer()), (\"BAYES\", MultinomialNB())])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"TRAIN_MODEL = PIPE.fit(TRAIN_DATA, EXPECTED_ENCODER)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## FUNKCJE"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def BayesFit(MODEL, DOC):\n",
" PREDICTION = MODEL.predict(DOC)\n",
" return PREDICTION"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLIK DEV-0"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting dev-0/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- dev-0/in.tsv.xz > dev-0/in.tsv\n",
"patool: with shell=True\n",
"patool: ... dev-0/in.tsv.xz extracted to `dev-0/'.\n"
]
}
],
"source": [
"patoolib.extract_archive(\"dev-0/in.tsv.xz\", outdir=\"dev-0/\")\n",
"INFILE = open('dev-0/in.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"OUTFILE = open(\"dev-0/out.tsv\", \"w\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"ALL_DOC = INFILE.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"for x in RESULT:\n",
" OUTFILE.write(str(x) + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"INFILE.close()\n",
"OUTFILE.close()\n",
"#os.remove(\"dev-0/in.tsv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLIK TEST-A"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting test-A/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- test-A/in.tsv.xz > test-A/in.tsv\n",
"patool: with shell=True\n",
"patool: ... test-A/in.tsv.xz extracted to `test-A/'.\n"
]
}
],
"source": [
"patoolib.extract_archive(\"test-A/in.tsv.xz\", outdir=\"test-A/\")\n",
"INFILE = open('test-A/in.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"OUTFILE = open(\"test-A/out.tsv\", \"w\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"ALL_DOC = INFILE.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"for x in RESULT:\n",
" OUTFILE.write(str(x) + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"INFILE.close()\n",
"OUTFILE.close()\n",
"#os.remove(\"test-A/in.tsv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}