#!/usr/bin/python3 import sys import pickle from math import log, exp from tokenizer import tokenize #Load model model = pickle.load(open("model.pkl","rb")) weights, word_to_index_mapping, word_count = model for line in sys.stdin: document = line.rstrip() fields = document.split('\t') document = fields[0] terms = tokenize(document) y_predicted = weights[0] for word in terms: y_predicted += weights[word_to_index_mapping.get(word,0)] * (word_count.get(word,0) / len(word_count)) if y_predicted <= 0.5: print(0) else: print(1)