{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Self made simplified I-KNN"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import helpers\n",
"import pandas as pd\n",
"import numpy as np\n",
"import scipy.sparse as sparse\n",
"from collections import defaultdict\n",
"from itertools import chain\n",
"import random\n",
"\n",
"train_read=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\\t', header=None)\n",
"test_read=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"train_ui, test_ui, user_code_id, user_id_code, item_code_id, item_id_code = helpers.data_to_csr(train_read, test_read)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class IKNN():\n",
" \n",
" def fit(self, train_ui):\n",
" self.train_ui=train_ui\n",
" \n",
" train_iu=train_ui.transpose()\n",
" norms=np.linalg.norm(train_iu.A, axis=1) # here we compute lenth of each item ratings vector\n",
" norms=np.vectorize(lambda x: max(x,1))(norms[:,None]) # to avoid dividing by zero\n",
"\n",
" normalized_train_iu=sparse.csr_matrix(train_iu/norms)\n",
"\n",
" self.similarity_matrix_ii=normalized_train_iu*normalized_train_iu.transpose()\n",
" \n",
" self.estimations=np.array(train_ui*self.similarity_matrix_ii/((train_ui>0)*self.similarity_matrix_ii))\n",
" \n",
" def recommend(self, user_code_id, item_code_id, topK=10):\n",
" \n",
" top_k = defaultdict(list)\n",
" for nb_user, user in enumerate(self.estimations):\n",
" \n",
" user_rated=self.train_ui.indices[self.train_ui.indptr[nb_user]:self.train_ui.indptr[nb_user+1]]\n",
" for item, score in enumerate(user):\n",
" if item not in user_rated and not np.isnan(score):\n",
" top_k[user_code_id[nb_user]].append((item_code_id[item], score))\n",
" result=[]\n",
" # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)\n",
" for uid, item_scores in top_k.items():\n",
" item_scores.sort(key=lambda x: x[1], reverse=True)\n",
" result.append([uid]+list(chain(*item_scores[:topK])))\n",
" return result\n",
" \n",
" def estimate(self, user_code_id, item_code_id, test_ui):\n",
" result=[]\n",
" for user, item in zip(*test_ui.nonzero()):\n",
" result.append([user_code_id[user], item_code_id[item], \n",
" self.estimations[user,item] if not np.isnan(self.estimations[user,item]) else 1])\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"toy train ui:\n"
]
},
{
"data": {
"text/plain": [
"array([[3, 4, 0, 0, 5, 0, 0, 4],\n",
" [0, 1, 2, 3, 0, 0, 0, 0],\n",
" [0, 0, 0, 5, 0, 3, 4, 0]], dtype=int64)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"similarity matrix:\n"
]
},
{
"data": {
"text/plain": [
"array([[1. , 0.9701425 , 0. , 0. , 1. ,\n",
" 0. , 0. , 1. ],\n",
" [0.9701425 , 1. , 0.24253563, 0.12478355, 0.9701425 ,\n",
" 0. , 0. , 0.9701425 ],\n",
" [0. , 0.24253563, 1. , 0.51449576, 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0.12478355, 0.51449576, 1. , 0. ,\n",
" 0.85749293, 0.85749293, 0. ],\n",
" [1. , 0.9701425 , 0. , 0. , 1. ,\n",
" 0. , 0. , 1. ],\n",
" [0. , 0. , 0. , 0.85749293, 0. ,\n",
" 1. , 1. , 0. ],\n",
" [0. , 0. , 0. , 0.85749293, 0. ,\n",
" 1. , 1. , 0. ],\n",
" [1. , 0.9701425 , 0. , 0. , 1. ,\n",
" 0. , 0. , 1. ]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"estimations matrix:\n"
]
},
{
"data": {
"text/plain": [
"array([[4. , 4. , 4. , 4. , 4. ,\n",
" nan, nan, 4. ],\n",
" [1. , 1.35990333, 2.15478388, 2.53390319, 1. ,\n",
" 3. , 3. , 1. ],\n",
" [ nan, 5. , 5. , 4.05248907, nan,\n",
" 3.95012863, 3.95012863, nan]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[[0, 20, 4.0, 30, 4.0],\n",
" [10, 50, 3.0, 60, 3.0, 0, 1.0, 40, 1.0, 70, 1.0],\n",
" [20, 10, 5.0, 20, 5.0]]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# toy example\n",
"toy_train_read=pd.read_csv('./Datasets/toy-example/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"toy_test_read=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n",
"\n",
"toy_train_ui, toy_test_ui, toy_user_code_id, toy_user_id_code, \\\n",
"toy_item_code_id, toy_item_id_code = helpers.data_to_csr(toy_train_read, toy_test_read)\n",
"\n",
"\n",
"model=IKNN()\n",
"model.fit(toy_train_ui)\n",
"\n",
"print('toy train ui:')\n",
"display(toy_train_ui.A)\n",
"\n",
"print('similarity matrix:')\n",
"display(model.similarity_matrix_ii.A)\n",
"\n",
"print('estimations matrix:')\n",
"display(model.estimations)\n",
"\n",
"model.recommend(toy_user_code_id, toy_item_code_id)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"model=IKNN()\n",
"model.fit(train_ui)\n",
"\n",
"top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))\n",
"\n",
"top_n.to_csv('Recommendations generated/ml-100k/Self_IKNN_reco.csv', index=False, header=False)\n",
"\n",
"estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))\n",
"estimations.to_csv('Recommendations generated/ml-100k/Self_IKNN_estimations.csv', index=False, header=False)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 3162.40it/s]\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" F_2 | \n",
" Whole_average | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1.018363 | \n",
" 0.808793 | \n",
" 0.000318 | \n",
" 0.000108 | \n",
" 0.00014 | \n",
" 0.000189 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.000214 | \n",
" 0.000037 | \n",
" 0.000368 | \n",
" 0.496391 | \n",
" 0.003181 | \n",
" 0.000118 | \n",
" 0.041755 | \n",
" 0.392153 | \n",
" 0.11544 | \n",
" 4.174741 | \n",
" 0.965327 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" RMSE MAE precision recall F_1 F_05 \\\n",
"0 1.018363 0.808793 0.000318 0.000108 0.00014 0.000189 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.0 0.0 0.000214 0.000037 0.000368 0.496391 \n",
"\n",
" HR F_2 Whole_average Reco in test Test coverage Shannon \\\n",
"0 0.003181 0.000118 0.041755 0.392153 0.11544 4.174741 \n",
"\n",
" Gini \n",
"0 0.965327 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import evaluation_measures as ev\n",
"estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_IKNN_estimations.csv', header=None)\n",
"reco=np.loadtxt('Recommendations generated/ml-100k/Self_IKNN_reco.csv', delimiter=',')\n",
"\n",
"ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None),\n",
" estimations_df=estimations_df, \n",
" reco=reco,\n",
" super_reactions=[4,5])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 3730.64it/s]\n",
"943it [00:00, 3921.13it/s]\n",
"943it [00:00, 3732.17it/s]\n",
"943it [00:00, 4078.27it/s]\n",
"943it [00:00, 2833.82it/s]\n",
"943it [00:00, 4027.94it/s]\n",
"943it [00:00, 4634.12it/s]\n",
"943it [00:00, 4453.36it/s]\n",
"943it [00:00, 4301.74it/s]\n",
"943it [00:00, 5008.94it/s]\n",
"943it [00:00, 3542.76it/s]\n",
"943it [00:00, 3280.94it/s]\n",
"943it [00:00, 3370.61it/s]\n",
"943it [00:00, 4467.43it/s]\n",
"943it [00:00, 3794.77it/s]\n",
"943it [00:00, 3759.22it/s]\n",
"943it [00:00, 4144.81it/s]\n",
"943it [00:00, 4232.41it/s]\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" F_2 | \n",
" Whole_average | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Self_RP3Beta | \n",
" 3.702928 | \n",
" 3.527713 | \n",
" 0.322694 | \n",
" 0.216069 | \n",
" 0.212152 | \n",
" 0.247538 | \n",
" 0.245279 | \n",
" 0.284983 | \n",
" 0.388271 | \n",
" 0.248239 | \n",
" 0.636318 | \n",
" 0.605683 | \n",
" 0.910923 | \n",
" 0.205450 | \n",
" 0.376967 | \n",
" 0.999788 | \n",
" 0.178932 | \n",
" 4.549663 | \n",
" 0.950182 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_P3 | \n",
" 3.702446 | \n",
" 3.527273 | \n",
" 0.282185 | \n",
" 0.192092 | \n",
" 0.186749 | \n",
" 0.216980 | \n",
" 0.204185 | \n",
" 0.240096 | \n",
" 0.339114 | \n",
" 0.204905 | \n",
" 0.572157 | \n",
" 0.593544 | \n",
" 0.875928 | \n",
" 0.181702 | \n",
" 0.340803 | \n",
" 1.000000 | \n",
" 0.077201 | \n",
" 3.875892 | \n",
" 0.974947 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopPop | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.188865 | \n",
" 0.116919 | \n",
" 0.118732 | \n",
" 0.141584 | \n",
" 0.130472 | \n",
" 0.137473 | \n",
" 0.214651 | \n",
" 0.111707 | \n",
" 0.400939 | \n",
" 0.555546 | \n",
" 0.765642 | \n",
" 0.112750 | \n",
" 0.249607 | \n",
" 1.000000 | \n",
" 0.038961 | \n",
" 3.159079 | \n",
" 0.987317 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_SVDBaseline | \n",
" 3.645666 | \n",
" 3.480246 | \n",
" 0.137858 | \n",
" 0.082398 | \n",
" 0.084151 | \n",
" 0.101063 | \n",
" 0.107940 | \n",
" 0.109393 | \n",
" 0.164477 | \n",
" 0.082973 | \n",
" 0.342374 | \n",
" 0.538097 | \n",
" 0.638388 | \n",
" 0.079860 | \n",
" 0.205748 | \n",
" 0.999894 | \n",
" 0.279221 | \n",
" 5.159076 | \n",
" 0.907220 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_SVD | \n",
" 0.952563 | \n",
" 0.750158 | \n",
" 0.094486 | \n",
" 0.046274 | \n",
" 0.051389 | \n",
" 0.065625 | \n",
" 0.082618 | \n",
" 0.074150 | \n",
" 0.109320 | \n",
" 0.051383 | \n",
" 0.240693 | \n",
" 0.519849 | \n",
" 0.475080 | \n",
" 0.046237 | \n",
" 0.154759 | \n",
" 0.993425 | \n",
" 0.206349 | \n",
" 4.442996 | \n",
" 0.952832 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_SVD | \n",
" 0.914890 | \n",
" 0.717962 | \n",
" 0.102969 | \n",
" 0.042325 | \n",
" 0.052022 | \n",
" 0.069313 | \n",
" 0.093562 | \n",
" 0.074994 | \n",
" 0.105416 | \n",
" 0.050278 | \n",
" 0.191533 | \n",
" 0.517890 | \n",
" 0.462354 | \n",
" 0.044591 | \n",
" 0.150604 | \n",
" 0.867656 | \n",
" 0.141414 | \n",
" 3.929249 | \n",
" 0.971112 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Baseline | \n",
" 0.949459 | \n",
" 0.752487 | \n",
" 0.091410 | \n",
" 0.037652 | \n",
" 0.046030 | \n",
" 0.061286 | \n",
" 0.079614 | \n",
" 0.056463 | \n",
" 0.095957 | \n",
" 0.043178 | \n",
" 0.198193 | \n",
" 0.515501 | \n",
" 0.437964 | \n",
" 0.039549 | \n",
" 0.141900 | \n",
" 1.000000 | \n",
" 0.033911 | \n",
" 2.836513 | \n",
" 0.991139 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_KNNSurprisetask | \n",
" 0.946255 | \n",
" 0.745209 | \n",
" 0.083457 | \n",
" 0.032848 | \n",
" 0.041227 | \n",
" 0.055493 | \n",
" 0.074785 | \n",
" 0.048890 | \n",
" 0.089577 | \n",
" 0.040902 | \n",
" 0.189057 | \n",
" 0.513076 | \n",
" 0.417815 | \n",
" 0.034996 | \n",
" 0.135177 | \n",
" 0.888547 | \n",
" 0.130592 | \n",
" 3.611806 | \n",
" 0.978659 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopRated | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.079321 | \n",
" 0.032667 | \n",
" 0.039983 | \n",
" 0.053170 | \n",
" 0.068884 | \n",
" 0.048582 | \n",
" 0.070766 | \n",
" 0.027602 | \n",
" 0.114790 | \n",
" 0.512943 | \n",
" 0.411453 | \n",
" 0.034385 | \n",
" 0.124546 | \n",
" 1.000000 | \n",
" 0.024531 | \n",
" 2.761238 | \n",
" 0.991660 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_SVDBiased | \n",
" 0.942141 | \n",
" 0.742760 | \n",
" 0.081230 | \n",
" 0.032344 | \n",
" 0.040302 | \n",
" 0.053932 | \n",
" 0.072639 | \n",
" 0.051126 | \n",
" 0.087552 | \n",
" 0.039346 | \n",
" 0.191285 | \n",
" 0.512818 | \n",
" 0.416755 | \n",
" 0.034405 | \n",
" 0.134478 | \n",
" 0.997667 | \n",
" 0.165224 | \n",
" 4.147579 | \n",
" 0.964690 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_GlobalAvg | \n",
" 1.125760 | \n",
" 0.943534 | \n",
" 0.061188 | \n",
" 0.025968 | \n",
" 0.031383 | \n",
" 0.041343 | \n",
" 0.040558 | \n",
" 0.032107 | \n",
" 0.067695 | \n",
" 0.027470 | \n",
" 0.171187 | \n",
" 0.509546 | \n",
" 0.384942 | \n",
" 0.027213 | \n",
" 0.118383 | \n",
" 1.000000 | \n",
" 0.025974 | \n",
" 2.711772 | \n",
" 0.992003 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Random | \n",
" 1.525633 | \n",
" 1.225714 | \n",
" 0.047720 | \n",
" 0.022049 | \n",
" 0.025494 | \n",
" 0.032845 | \n",
" 0.029077 | \n",
" 0.025015 | \n",
" 0.051757 | \n",
" 0.019242 | \n",
" 0.128181 | \n",
" 0.507543 | \n",
" 0.327678 | \n",
" 0.022628 | \n",
" 0.103269 | \n",
" 0.987275 | \n",
" 0.184704 | \n",
" 5.105122 | \n",
" 0.906561 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_I-KNN | \n",
" 1.030386 | \n",
" 0.813067 | \n",
" 0.026087 | \n",
" 0.006908 | \n",
" 0.010593 | \n",
" 0.016046 | \n",
" 0.021137 | \n",
" 0.009522 | \n",
" 0.024214 | \n",
" 0.008958 | \n",
" 0.048068 | \n",
" 0.499885 | \n",
" 0.154825 | \n",
" 0.008007 | \n",
" 0.069521 | \n",
" 0.402333 | \n",
" 0.434343 | \n",
" 5.133650 | \n",
" 0.877999 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_I-KNNBaseline | \n",
" 0.935327 | \n",
" 0.737424 | \n",
" 0.002545 | \n",
" 0.000755 | \n",
" 0.001105 | \n",
" 0.001602 | \n",
" 0.002253 | \n",
" 0.000930 | \n",
" 0.003444 | \n",
" 0.001362 | \n",
" 0.011760 | \n",
" 0.496724 | \n",
" 0.021209 | \n",
" 0.000862 | \n",
" 0.045379 | \n",
" 0.482821 | \n",
" 0.059885 | \n",
" 2.232578 | \n",
" 0.994487 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_U-KNN | \n",
" 1.023495 | \n",
" 0.807913 | \n",
" 0.000742 | \n",
" 0.000205 | \n",
" 0.000305 | \n",
" 0.000449 | \n",
" 0.000536 | \n",
" 0.000198 | \n",
" 0.000845 | \n",
" 0.000274 | \n",
" 0.002744 | \n",
" 0.496441 | \n",
" 0.007423 | \n",
" 0.000235 | \n",
" 0.042533 | \n",
" 0.602121 | \n",
" 0.010823 | \n",
" 2.089186 | \n",
" 0.995706 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineIU | \n",
" 0.958136 | \n",
" 0.754051 | \n",
" 0.000954 | \n",
" 0.000188 | \n",
" 0.000298 | \n",
" 0.000481 | \n",
" 0.000644 | \n",
" 0.000223 | \n",
" 0.001043 | \n",
" 0.000335 | \n",
" 0.003348 | \n",
" 0.496433 | \n",
" 0.009544 | \n",
" 0.000220 | \n",
" 0.042809 | \n",
" 0.699046 | \n",
" 0.005051 | \n",
" 1.945910 | \n",
" 0.995669 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineUI | \n",
" 0.967585 | \n",
" 0.762740 | \n",
" 0.000954 | \n",
" 0.000170 | \n",
" 0.000278 | \n",
" 0.000463 | \n",
" 0.000644 | \n",
" 0.000189 | \n",
" 0.000752 | \n",
" 0.000168 | \n",
" 0.001677 | \n",
" 0.496424 | \n",
" 0.009544 | \n",
" 0.000201 | \n",
" 0.042622 | \n",
" 0.600530 | \n",
" 0.005051 | \n",
" 1.803126 | \n",
" 0.996380 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_IKNN | \n",
" 1.018363 | \n",
" 0.808793 | \n",
" 0.000318 | \n",
" 0.000108 | \n",
" 0.000140 | \n",
" 0.000189 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000214 | \n",
" 0.000037 | \n",
" 0.000368 | \n",
" 0.496391 | \n",
" 0.003181 | \n",
" 0.000118 | \n",
" 0.041755 | \n",
" 0.392153 | \n",
" 0.115440 | \n",
" 4.174741 | \n",
" 0.965327 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_RP3Beta 3.702928 3.527713 0.322694 0.216069 0.212152 \n",
"0 Self_P3 3.702446 3.527273 0.282185 0.192092 0.186749 \n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Self_SVDBaseline 3.645666 3.480246 0.137858 0.082398 0.084151 \n",
"0 Ready_SVD 0.952563 0.750158 0.094486 0.046274 0.051389 \n",
"0 Self_SVD 0.914890 0.717962 0.102969 0.042325 0.052022 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Self_KNNSurprisetask 0.946255 0.745209 0.083457 0.032848 0.041227 \n",
"0 Self_TopRated 2.508258 2.217909 0.079321 0.032667 0.039983 \n",
"0 Ready_SVDBiased 0.942141 0.742760 0.081230 0.032344 0.040302 \n",
"0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n",
"0 Ready_Random 1.525633 1.225714 0.047720 0.022049 0.025494 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
"0 Self_BaselineIU 0.958136 0.754051 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
"\n",
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.247538 0.245279 0.284983 0.388271 0.248239 0.636318 \n",
"0 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 \n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.101063 0.107940 0.109393 0.164477 0.082973 0.342374 \n",
"0 0.065625 0.082618 0.074150 0.109320 0.051383 0.240693 \n",
"0 0.069313 0.093562 0.074994 0.105416 0.050278 0.191533 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.055493 0.074785 0.048890 0.089577 0.040902 0.189057 \n",
"0 0.053170 0.068884 0.048582 0.070766 0.027602 0.114790 \n",
"0 0.053932 0.072639 0.051126 0.087552 0.039346 0.191285 \n",
"0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n",
"0 0.032845 0.029077 0.025015 0.051757 0.019242 0.128181 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n",
" LAUC HR F_2 Whole_average Reco in test Test coverage \\\n",
"0 0.605683 0.910923 0.205450 0.376967 0.999788 0.178932 \n",
"0 0.593544 0.875928 0.181702 0.340803 1.000000 0.077201 \n",
"0 0.555546 0.765642 0.112750 0.249607 1.000000 0.038961 \n",
"0 0.538097 0.638388 0.079860 0.205748 0.999894 0.279221 \n",
"0 0.519849 0.475080 0.046237 0.154759 0.993425 0.206349 \n",
"0 0.517890 0.462354 0.044591 0.150604 0.867656 0.141414 \n",
"0 0.515501 0.437964 0.039549 0.141900 1.000000 0.033911 \n",
"0 0.513076 0.417815 0.034996 0.135177 0.888547 0.130592 \n",
"0 0.512943 0.411453 0.034385 0.124546 1.000000 0.024531 \n",
"0 0.512818 0.416755 0.034405 0.134478 0.997667 0.165224 \n",
"0 0.509546 0.384942 0.027213 0.118383 1.000000 0.025974 \n",
"0 0.507543 0.327678 0.022628 0.103269 0.987275 0.184704 \n",
"0 0.499885 0.154825 0.008007 0.069521 0.402333 0.434343 \n",
"0 0.496724 0.021209 0.000862 0.045379 0.482821 0.059885 \n",
"0 0.496441 0.007423 0.000235 0.042533 0.602121 0.010823 \n",
"0 0.496433 0.009544 0.000220 0.042809 0.699046 0.005051 \n",
"0 0.496424 0.009544 0.000201 0.042622 0.600530 0.005051 \n",
"0 0.496391 0.003181 0.000118 0.041755 0.392153 0.115440 \n",
"\n",
" Shannon Gini \n",
"0 4.549663 0.950182 \n",
"0 3.875892 0.974947 \n",
"0 3.159079 0.987317 \n",
"0 5.159076 0.907220 \n",
"0 4.442996 0.952832 \n",
"0 3.929249 0.971112 \n",
"0 2.836513 0.991139 \n",
"0 3.611806 0.978659 \n",
"0 2.761238 0.991660 \n",
"0 4.147579 0.964690 \n",
"0 2.711772 0.992003 \n",
"0 5.105122 0.906561 \n",
"0 5.133650 0.877999 \n",
"0 2.232578 0.994487 \n",
"0 2.089186 0.995706 \n",
"0 1.945910 0.995669 \n",
"0 1.803126 0.996380 \n",
"0 4.174741 0.965327 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import imp\n",
"imp.reload(ev)\n",
"\n",
"import evaluation_measures as ev\n",
"dir_path=\"Recommendations generated/ml-100k/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ready-made KNNs - Surprise implementation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### I-KNN - basic"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"import helpers\n",
"import surprise as sp\n",
"import imp\n",
"imp.reload(helpers)\n",
"\n",
"sim_options = {'name': 'cosine',\n",
" 'user_based': False} # compute similarities between items\n",
"algo = sp.KNNBasic(sim_options=sim_options)\n",
"\n",
"helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_I-KNN_reco.csv',\n",
" estimations_path='Recommendations generated/ml-100k/Ready_I-KNN_estimations.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### U-KNN - basic"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"import helpers\n",
"import surprise as sp\n",
"import imp\n",
"imp.reload(helpers)\n",
"\n",
"sim_options = {'name': 'cosine',\n",
" 'user_based': True} # compute similarities between users\n",
"algo = sp.KNNBasic(sim_options=sim_options)\n",
"\n",
"helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_U-KNN_reco.csv',\n",
" estimations_path='Recommendations generated/ml-100k/Ready_U-KNN_estimations.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### I-KNN - on top baseline"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimating biases using als...\n",
"Computing the msd similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"import helpers\n",
"import surprise as sp\n",
"import imp\n",
"imp.reload(helpers)\n",
"\n",
"sim_options = {'name': 'cosine',\n",
" 'user_based': False} # compute similarities between items\n",
"algo = sp.KNNBaseline()\n",
"\n",
"helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_I-KNNBaseline_reco.csv',\n",
" estimations_path='Recommendations generated/ml-100k/Ready_I-KNNBaseline_estimations.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# project task 4: use a version of your choice of Surprise KNNalgorithm"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimating biases using als...\n",
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"# read the docs and try to find best parameter configuration (let say in terms of RMSE)\n",
"# https://surprise.readthedocs.io/en/stable/knn_inspired.html##surprise.prediction_algorithms.knns.KNNBaseline\n",
"# the solution here can be similar to examples above\n",
"# please save the output in 'Recommendations generated/ml-100k/Self_KNNSurprisetask_reco.csv' and\n",
"# 'Recommendations generated/ml-100k/Self_KNNSurprisetask_estimations.csv'\n",
"\n",
"## SOLUTION TASK 4\n",
"\n",
"import helpers\n",
"import surprise as sp\n",
"import imp\n",
"\n",
"imp.reload(helpers)\n",
"\n",
"sim_options = {'name': 'cosine',\n",
" 'user_based': False}\n",
"\n",
"algo = sp.KNNBaseline(sim_options = sim_options)\n",
"\n",
"helpers.ready_made(algo, reco_path = 'Recommendations generated/ml-100k/Self_KNNSurprisetask_reco.csv',\n",
" estimations_path = 'Recommendations generated/ml-100k/Self_KNNSurprisetask_estimations.csv')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 2579.01it/s]\n",
"943it [00:00, 2473.28it/s]\n",
"943it [00:00, 2787.61it/s]\n",
"943it [00:00, 2862.03it/s]\n",
"943it [00:00, 2636.14it/s]\n",
"943it [00:00, 2764.91it/s]\n",
"943it [00:00, 2362.52it/s]\n",
"943it [00:00, 2446.87it/s]\n",
"943it [00:00, 2961.39it/s]\n",
"943it [00:00, 2858.86it/s]\n",
"943it [00:00, 2449.24it/s]\n",
"943it [00:00, 2748.70it/s]\n",
"943it [00:00, 2379.95it/s]\n",
"943it [00:00, 2599.51it/s]\n",
"943it [00:00, 2705.51it/s]\n",
"943it [00:00, 2574.33it/s]\n",
"943it [00:00, 2450.80it/s]\n",
"943it [00:00, 2242.87it/s]\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" RMSE | \n",
" MAE | \n",
" precision | \n",
" recall | \n",
" F_1 | \n",
" F_05 | \n",
" precision_super | \n",
" recall_super | \n",
" NDCG | \n",
" mAP | \n",
" MRR | \n",
" LAUC | \n",
" HR | \n",
" F_2 | \n",
" Whole_average | \n",
" Reco in test | \n",
" Test coverage | \n",
" Shannon | \n",
" Gini | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Self_RP3Beta | \n",
" 3.702928 | \n",
" 3.527713 | \n",
" 0.322694 | \n",
" 0.216069 | \n",
" 0.212152 | \n",
" 0.247538 | \n",
" 0.245279 | \n",
" 0.284983 | \n",
" 0.388271 | \n",
" 0.248239 | \n",
" 0.636318 | \n",
" 0.605683 | \n",
" 0.910923 | \n",
" 0.205450 | \n",
" 0.376967 | \n",
" 0.999788 | \n",
" 0.178932 | \n",
" 4.549663 | \n",
" 0.950182 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_P3 | \n",
" 3.702446 | \n",
" 3.527273 | \n",
" 0.282185 | \n",
" 0.192092 | \n",
" 0.186749 | \n",
" 0.216980 | \n",
" 0.204185 | \n",
" 0.240096 | \n",
" 0.339114 | \n",
" 0.204905 | \n",
" 0.572157 | \n",
" 0.593544 | \n",
" 0.875928 | \n",
" 0.181702 | \n",
" 0.340803 | \n",
" 1.000000 | \n",
" 0.077201 | \n",
" 3.875892 | \n",
" 0.974947 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopPop | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.188865 | \n",
" 0.116919 | \n",
" 0.118732 | \n",
" 0.141584 | \n",
" 0.130472 | \n",
" 0.137473 | \n",
" 0.214651 | \n",
" 0.111707 | \n",
" 0.400939 | \n",
" 0.555546 | \n",
" 0.765642 | \n",
" 0.112750 | \n",
" 0.249607 | \n",
" 1.000000 | \n",
" 0.038961 | \n",
" 3.159079 | \n",
" 0.987317 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_SVDBaseline | \n",
" 3.645666 | \n",
" 3.480246 | \n",
" 0.137858 | \n",
" 0.082398 | \n",
" 0.084151 | \n",
" 0.101063 | \n",
" 0.107940 | \n",
" 0.109393 | \n",
" 0.164477 | \n",
" 0.082973 | \n",
" 0.342374 | \n",
" 0.538097 | \n",
" 0.638388 | \n",
" 0.079860 | \n",
" 0.205748 | \n",
" 0.999894 | \n",
" 0.279221 | \n",
" 5.159076 | \n",
" 0.907220 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_SVD | \n",
" 0.952563 | \n",
" 0.750158 | \n",
" 0.094486 | \n",
" 0.046274 | \n",
" 0.051389 | \n",
" 0.065625 | \n",
" 0.082618 | \n",
" 0.074150 | \n",
" 0.109320 | \n",
" 0.051383 | \n",
" 0.240693 | \n",
" 0.519849 | \n",
" 0.475080 | \n",
" 0.046237 | \n",
" 0.154759 | \n",
" 0.993425 | \n",
" 0.206349 | \n",
" 4.442996 | \n",
" 0.952832 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_SVD | \n",
" 0.914890 | \n",
" 0.717962 | \n",
" 0.102969 | \n",
" 0.042325 | \n",
" 0.052022 | \n",
" 0.069313 | \n",
" 0.093562 | \n",
" 0.074994 | \n",
" 0.105416 | \n",
" 0.050278 | \n",
" 0.191533 | \n",
" 0.517890 | \n",
" 0.462354 | \n",
" 0.044591 | \n",
" 0.150604 | \n",
" 0.867656 | \n",
" 0.141414 | \n",
" 3.929249 | \n",
" 0.971112 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Baseline | \n",
" 0.949459 | \n",
" 0.752487 | \n",
" 0.091410 | \n",
" 0.037652 | \n",
" 0.046030 | \n",
" 0.061286 | \n",
" 0.079614 | \n",
" 0.056463 | \n",
" 0.095957 | \n",
" 0.043178 | \n",
" 0.198193 | \n",
" 0.515501 | \n",
" 0.437964 | \n",
" 0.039549 | \n",
" 0.141900 | \n",
" 1.000000 | \n",
" 0.033911 | \n",
" 2.836513 | \n",
" 0.991139 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_KNNSurprisetask | \n",
" 0.946255 | \n",
" 0.745209 | \n",
" 0.083457 | \n",
" 0.032848 | \n",
" 0.041227 | \n",
" 0.055493 | \n",
" 0.074785 | \n",
" 0.048890 | \n",
" 0.089577 | \n",
" 0.040902 | \n",
" 0.189057 | \n",
" 0.513076 | \n",
" 0.417815 | \n",
" 0.034996 | \n",
" 0.135177 | \n",
" 0.888547 | \n",
" 0.130592 | \n",
" 3.611806 | \n",
" 0.978659 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_TopRated | \n",
" 2.508258 | \n",
" 2.217909 | \n",
" 0.079321 | \n",
" 0.032667 | \n",
" 0.039983 | \n",
" 0.053170 | \n",
" 0.068884 | \n",
" 0.048582 | \n",
" 0.070766 | \n",
" 0.027602 | \n",
" 0.114790 | \n",
" 0.512943 | \n",
" 0.411453 | \n",
" 0.034385 | \n",
" 0.124546 | \n",
" 1.000000 | \n",
" 0.024531 | \n",
" 2.761238 | \n",
" 0.991660 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_SVDBiased | \n",
" 0.942141 | \n",
" 0.742760 | \n",
" 0.081230 | \n",
" 0.032344 | \n",
" 0.040302 | \n",
" 0.053932 | \n",
" 0.072639 | \n",
" 0.051126 | \n",
" 0.087552 | \n",
" 0.039346 | \n",
" 0.191285 | \n",
" 0.512818 | \n",
" 0.416755 | \n",
" 0.034405 | \n",
" 0.134478 | \n",
" 0.997667 | \n",
" 0.165224 | \n",
" 4.147579 | \n",
" 0.964690 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_GlobalAvg | \n",
" 1.125760 | \n",
" 0.943534 | \n",
" 0.061188 | \n",
" 0.025968 | \n",
" 0.031383 | \n",
" 0.041343 | \n",
" 0.040558 | \n",
" 0.032107 | \n",
" 0.067695 | \n",
" 0.027470 | \n",
" 0.171187 | \n",
" 0.509546 | \n",
" 0.384942 | \n",
" 0.027213 | \n",
" 0.118383 | \n",
" 1.000000 | \n",
" 0.025974 | \n",
" 2.711772 | \n",
" 0.992003 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_Random | \n",
" 1.525633 | \n",
" 1.225714 | \n",
" 0.047720 | \n",
" 0.022049 | \n",
" 0.025494 | \n",
" 0.032845 | \n",
" 0.029077 | \n",
" 0.025015 | \n",
" 0.051757 | \n",
" 0.019242 | \n",
" 0.128181 | \n",
" 0.507543 | \n",
" 0.327678 | \n",
" 0.022628 | \n",
" 0.103269 | \n",
" 0.987275 | \n",
" 0.184704 | \n",
" 5.105122 | \n",
" 0.906561 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_I-KNN | \n",
" 1.030386 | \n",
" 0.813067 | \n",
" 0.026087 | \n",
" 0.006908 | \n",
" 0.010593 | \n",
" 0.016046 | \n",
" 0.021137 | \n",
" 0.009522 | \n",
" 0.024214 | \n",
" 0.008958 | \n",
" 0.048068 | \n",
" 0.499885 | \n",
" 0.154825 | \n",
" 0.008007 | \n",
" 0.069521 | \n",
" 0.402333 | \n",
" 0.434343 | \n",
" 5.133650 | \n",
" 0.877999 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_I-KNNBaseline | \n",
" 0.935327 | \n",
" 0.737424 | \n",
" 0.002545 | \n",
" 0.000755 | \n",
" 0.001105 | \n",
" 0.001602 | \n",
" 0.002253 | \n",
" 0.000930 | \n",
" 0.003444 | \n",
" 0.001362 | \n",
" 0.011760 | \n",
" 0.496724 | \n",
" 0.021209 | \n",
" 0.000862 | \n",
" 0.045379 | \n",
" 0.482821 | \n",
" 0.059885 | \n",
" 2.232578 | \n",
" 0.994487 | \n",
"
\n",
" \n",
" 0 | \n",
" Ready_U-KNN | \n",
" 1.023495 | \n",
" 0.807913 | \n",
" 0.000742 | \n",
" 0.000205 | \n",
" 0.000305 | \n",
" 0.000449 | \n",
" 0.000536 | \n",
" 0.000198 | \n",
" 0.000845 | \n",
" 0.000274 | \n",
" 0.002744 | \n",
" 0.496441 | \n",
" 0.007423 | \n",
" 0.000235 | \n",
" 0.042533 | \n",
" 0.602121 | \n",
" 0.010823 | \n",
" 2.089186 | \n",
" 0.995706 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineIU | \n",
" 0.958136 | \n",
" 0.754051 | \n",
" 0.000954 | \n",
" 0.000188 | \n",
" 0.000298 | \n",
" 0.000481 | \n",
" 0.000644 | \n",
" 0.000223 | \n",
" 0.001043 | \n",
" 0.000335 | \n",
" 0.003348 | \n",
" 0.496433 | \n",
" 0.009544 | \n",
" 0.000220 | \n",
" 0.042809 | \n",
" 0.699046 | \n",
" 0.005051 | \n",
" 1.945910 | \n",
" 0.995669 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_BaselineUI | \n",
" 0.967585 | \n",
" 0.762740 | \n",
" 0.000954 | \n",
" 0.000170 | \n",
" 0.000278 | \n",
" 0.000463 | \n",
" 0.000644 | \n",
" 0.000189 | \n",
" 0.000752 | \n",
" 0.000168 | \n",
" 0.001677 | \n",
" 0.496424 | \n",
" 0.009544 | \n",
" 0.000201 | \n",
" 0.042622 | \n",
" 0.600530 | \n",
" 0.005051 | \n",
" 1.803126 | \n",
" 0.996380 | \n",
"
\n",
" \n",
" 0 | \n",
" Self_IKNN | \n",
" 1.018363 | \n",
" 0.808793 | \n",
" 0.000318 | \n",
" 0.000108 | \n",
" 0.000140 | \n",
" 0.000189 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000214 | \n",
" 0.000037 | \n",
" 0.000368 | \n",
" 0.496391 | \n",
" 0.003181 | \n",
" 0.000118 | \n",
" 0.041755 | \n",
" 0.392153 | \n",
" 0.115440 | \n",
" 4.174741 | \n",
" 0.965327 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_RP3Beta 3.702928 3.527713 0.322694 0.216069 0.212152 \n",
"0 Self_P3 3.702446 3.527273 0.282185 0.192092 0.186749 \n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Self_SVDBaseline 3.645666 3.480246 0.137858 0.082398 0.084151 \n",
"0 Ready_SVD 0.952563 0.750158 0.094486 0.046274 0.051389 \n",
"0 Self_SVD 0.914890 0.717962 0.102969 0.042325 0.052022 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Self_KNNSurprisetask 0.946255 0.745209 0.083457 0.032848 0.041227 \n",
"0 Self_TopRated 2.508258 2.217909 0.079321 0.032667 0.039983 \n",
"0 Ready_SVDBiased 0.942141 0.742760 0.081230 0.032344 0.040302 \n",
"0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n",
"0 Ready_Random 1.525633 1.225714 0.047720 0.022049 0.025494 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
"0 Self_BaselineIU 0.958136 0.754051 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
"\n",
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.247538 0.245279 0.284983 0.388271 0.248239 0.636318 \n",
"0 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 \n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.101063 0.107940 0.109393 0.164477 0.082973 0.342374 \n",
"0 0.065625 0.082618 0.074150 0.109320 0.051383 0.240693 \n",
"0 0.069313 0.093562 0.074994 0.105416 0.050278 0.191533 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.055493 0.074785 0.048890 0.089577 0.040902 0.189057 \n",
"0 0.053170 0.068884 0.048582 0.070766 0.027602 0.114790 \n",
"0 0.053932 0.072639 0.051126 0.087552 0.039346 0.191285 \n",
"0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n",
"0 0.032845 0.029077 0.025015 0.051757 0.019242 0.128181 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n",
" LAUC HR F_2 Whole_average Reco in test Test coverage \\\n",
"0 0.605683 0.910923 0.205450 0.376967 0.999788 0.178932 \n",
"0 0.593544 0.875928 0.181702 0.340803 1.000000 0.077201 \n",
"0 0.555546 0.765642 0.112750 0.249607 1.000000 0.038961 \n",
"0 0.538097 0.638388 0.079860 0.205748 0.999894 0.279221 \n",
"0 0.519849 0.475080 0.046237 0.154759 0.993425 0.206349 \n",
"0 0.517890 0.462354 0.044591 0.150604 0.867656 0.141414 \n",
"0 0.515501 0.437964 0.039549 0.141900 1.000000 0.033911 \n",
"0 0.513076 0.417815 0.034996 0.135177 0.888547 0.130592 \n",
"0 0.512943 0.411453 0.034385 0.124546 1.000000 0.024531 \n",
"0 0.512818 0.416755 0.034405 0.134478 0.997667 0.165224 \n",
"0 0.509546 0.384942 0.027213 0.118383 1.000000 0.025974 \n",
"0 0.507543 0.327678 0.022628 0.103269 0.987275 0.184704 \n",
"0 0.499885 0.154825 0.008007 0.069521 0.402333 0.434343 \n",
"0 0.496724 0.021209 0.000862 0.045379 0.482821 0.059885 \n",
"0 0.496441 0.007423 0.000235 0.042533 0.602121 0.010823 \n",
"0 0.496433 0.009544 0.000220 0.042809 0.699046 0.005051 \n",
"0 0.496424 0.009544 0.000201 0.042622 0.600530 0.005051 \n",
"0 0.496391 0.003181 0.000118 0.041755 0.392153 0.115440 \n",
"\n",
" Shannon Gini \n",
"0 4.549663 0.950182 \n",
"0 3.875892 0.974947 \n",
"0 3.159079 0.987317 \n",
"0 5.159076 0.907220 \n",
"0 4.442996 0.952832 \n",
"0 3.929249 0.971112 \n",
"0 2.836513 0.991139 \n",
"0 3.611806 0.978659 \n",
"0 2.761238 0.991660 \n",
"0 4.147579 0.964690 \n",
"0 2.711772 0.992003 \n",
"0 5.105122 0.906561 \n",
"0 5.133650 0.877999 \n",
"0 2.232578 0.994487 \n",
"0 2.089186 0.995706 \n",
"0 1.945910 0.995669 \n",
"0 1.803126 0.996380 \n",
"0 4.174741 0.965327 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import imp\n",
"imp.reload(ev)\n",
"\n",
"import evaluation_measures as ev\n",
"dir_path = \"Recommendations generated/ml-100k/\"\n",
"super_reactions = [4, 5]\n",
"test = pd.read_csv('./Datasets/ml-100k/test.csv', sep = '\\t', header = None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}