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Different types of graph models

There exists many recommendation models utilizing graphs.

Depending of what is the node in the graph we distinguish three basic
categories:

user-user graphs where nodes are users

item-item graphs where nodes are items

user-item graphs where nodes are both users and items

It is also possible to treat other objects as nodes - for example some
features of items or users like tags or categories.



User-user graphs

Example approach is described in [1], pages 63-66.
The idea is as follows:

each node of a graph is a user,

a directed edge between users u and v exists if there exists a linear
transformation which transforms ratings of one user onto the ratings
of another accurately (only movies rated by both users considered),

a prediction of a rating r̂
(v)
ui is a rating of rvi under the composition

of linear transformations of edges on the shortest path connecting u
and v ,

a final prediction of a rating r̂ui is an average of r̂
(v)
ui over distinct v ’s
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Item-item graphs
Item-item graph is an alternative way of defining similarity measure over
items and might be used by other algorithms (for example kNN).

Figure: Item-item graph. Source: [1]
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User-item bipartite graph

In user-item graphs:

each user and item is represented by a
node,

the edge between nodes exists if there
was an interaction between given user
and item,

it is possible to add weights between
edges.
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Figure: Bipartite graph of 5 users
and 5 items
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Adjacency matrix

Adjacency matrix of a graph of n nodes is
a n × n matrix where ai,j is the number of
edges connecting nodes i and j .
In our example we have

A =



0 0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0


Note that As(i , j) is the number of paths con-
necting vertices i and j in exactly s steps.

u1

u2

u3

u4

i1

i2

i3

i4

i5

users items

Figure: Bipartite graph of 5 users
and 5 items



3-Paths

3-Paths model

For a given user u we can recommend items with the greatest number of
paths of a given order starting at node u.

The smallest order we can take is 3 and usually performance is not
improved with a greater order.

Problems

The most popular items (with the greatest degree of nodes) will influence
the results.

Possible solution

Instead of using adjacency matrix we can use transition matrix (our
process here is a Markov chain).
To receive transition matrix it is enough to divide each row by its sum.
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P3 model

P3 model

For a given user u we can recommend items with the greatest probability
of transition from u within exactly 3 steps.

For convenience for will consider user and item transition matrices. In our
case we will have

Pui =


1
2 0 0 1

2 0
1
2

1
2 0 0 0

0 1
3

1
3

1
3 0

0 0 1
2 0 1

2



Piu =


1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 1

2 0
0 0 0 1


Note that for the matrix P3 = Pui · Piu · Pui , P3(u, i) contains a
probability that a random walk of the order 3 starting from u will finish
at i .



P3alpha

In [2] Cooper et al. introduced a simple modification of P3 model.
Basically they have taken each entry of a transition matrix to the power
alpha, where alpha is an hiperparameter.

P3alpha model

For a given user u we can recommend items ordered by
P3alpha = (Pui)α · (Piu)α · (Pui)α, where (Pui)α is a matrix (Pui) taken
elementwise to the power α.

Note that:

P3alpha is no longer a transition matrix,

with increasing alpha we decrease the impact of popular nodes,

P3 is a special case of P3alpha for alpha = 1.



RP3beta

In [3] Paudel et al. introduced another simple improvement of P3 (and of
P3alpha).

RP3beta model

For a given user u we can recommend items ordered by P3alpha divided
by item popularity to the power beta.

Note that:

RP3beta reduces to P3alpha for β = 0,

with increasing beta we recommend popular items less often.



Random walks

Matrix multiplication in case of large datasets is not possible.
Several ways ([2], [3]) introduced effective way of estimating graph based
approaches by using random walk sampling.

Figure: AUC and Prec@20 for different number of random walks per user
generated on MovieLens-M dataset [3]



Python implementation

To do (especially for absent students):

Go through - P5. Graph-based notebook to:

go through the implementation of RP3Beta
save recommendations of P3 model
observe evaluation measures
optimize hiperparameters
project task 6: generate recommendations of RP3Beta for
hiperparameters found to optimize recall
project task 7 (optional): implement graph-based model of your
choice (for example change length of paths in RP3beta)
observe sample recommendations



Project tasks

project task 1: implement TopRated

project task 2: implement self-made BaselineIU

project task 3: implement some other evaluation measure

project task 4: use a version of your choice of Surprise KNN
algorithm

project task 5: implement SVD on top baseline (as it is in Surprise
library)

project task 6: generate recommendations of RP3Beta for
hiperparameters found to optimize recall

project task 7 (optional): implement graph-based model of your
choice (for example change length of paths in RP3beta)
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Robert Kwieciński Part 5: Graph-based models

https://link.springer.com/book/10.1007/978-3-319-29659-3
https://link.springer.com/book/10.1007/978-3-319-29659-3

	Different graph models
	User-item models
	From P3 to RP3beta model
	Python implementation
	Summary - students' poject
	References

