174 lines
4.1 KiB
C++
174 lines
4.1 KiB
C++
|
#include "convolution.h"
|
||
|
|
||
|
/** Overloaded constructor */
|
||
|
Convolution::Convolution(PNM* img) :
|
||
|
Transformation(img)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
Convolution::Convolution(PNM* img, ImageViewer* iv) :
|
||
|
Transformation(img, iv)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/** Returns a convoluted form of the image */
|
||
|
PNM* Convolution::transform()
|
||
|
{
|
||
|
return convolute(getMask(3, Normalize), RepeatEdge);
|
||
|
}
|
||
|
|
||
|
/** Returns a sizeXsize matrix with the center point equal 1.0 */
|
||
|
math::matrix<float> Convolution::getMask(int size, Mode mode = Normalize)
|
||
|
{
|
||
|
math::matrix<float> mask(size, size);
|
||
|
|
||
|
// Get center of image
|
||
|
int center = size/2;
|
||
|
|
||
|
// Get mask
|
||
|
for (int i=0; i < size; i++)
|
||
|
{
|
||
|
for (int j=0; j < size; j++)
|
||
|
{
|
||
|
if (i==j && i == center && j == center)
|
||
|
{
|
||
|
mask[i][j] = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mask[i][j] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return mask;
|
||
|
}
|
||
|
|
||
|
/** Does the convolution process for all pixels using the given mask. */
|
||
|
PNM* Convolution::convolute(math::matrix<float> mask, Mode mode = RepeatEdge)
|
||
|
{
|
||
|
int width = image->width(),
|
||
|
height = image->height();
|
||
|
|
||
|
PNM* newImage = new PNM(width, height, image->format());
|
||
|
|
||
|
float weight = Convolution::sum(mask);
|
||
|
|
||
|
math::matrix<float> reflection = Convolution::reflection(mask);
|
||
|
for (int x=0; x < width ; x++)
|
||
|
{
|
||
|
for (int y=0; y < height; y++)
|
||
|
{
|
||
|
math::matrix<float> rAcc = Convolution::join(getWindow(x, y, mask.rowno(), Transformation::RChannel, mode), reflection);
|
||
|
math::matrix<float> gAcc = Convolution::join(getWindow(x, y, mask.rowno(), Transformation::GChannel, mode), reflection);
|
||
|
math::matrix<float> bAcc = Convolution::join(getWindow(x, y, mask.rowno(), Transformation::BChannel, mode), reflection);
|
||
|
|
||
|
float rAccSum = Convolution::sum(rAcc);
|
||
|
float gAccSum = Convolution::sum(gAcc);
|
||
|
float bAccSum = Convolution::sum(bAcc);
|
||
|
|
||
|
|
||
|
if (weight != 0)
|
||
|
{
|
||
|
rAccSum = rAccSum / weight;
|
||
|
gAccSum = gAccSum / weight;
|
||
|
bAccSum = bAccSum / weight;
|
||
|
}
|
||
|
|
||
|
// Calculate Red Accumulate Sum
|
||
|
if (rAccSum < 0)
|
||
|
{
|
||
|
rAccSum = 0;
|
||
|
}
|
||
|
else if (rAccSum > 255)
|
||
|
{
|
||
|
rAccSum = 255;
|
||
|
}
|
||
|
|
||
|
// Calculate Green Accumulate Sum
|
||
|
if (gAccSum < 0)
|
||
|
{
|
||
|
gAccSum = 0;
|
||
|
}
|
||
|
else if (gAccSum > 255)
|
||
|
{
|
||
|
gAccSum = 255;
|
||
|
}
|
||
|
|
||
|
// Calculate Blue Accumulate Sum
|
||
|
if (bAccSum < 0)
|
||
|
{
|
||
|
bAccSum = 0;
|
||
|
}
|
||
|
else if(bAccSum > 255)
|
||
|
{
|
||
|
bAccSum = 255;
|
||
|
}
|
||
|
|
||
|
// Create pixel
|
||
|
QColor newPixel = QColor(rAccSum, gAccSum, bAccSum);
|
||
|
|
||
|
// Set pixel
|
||
|
newImage->setPixel(x,y, newPixel.rgb());
|
||
|
}
|
||
|
}
|
||
|
return newImage;
|
||
|
}
|
||
|
|
||
|
/** Joins to matrices by multiplying the A[i,j] with B[i,j].
|
||
|
* Warning! Both Matrices must be squares with the same size!
|
||
|
*/
|
||
|
const math::matrix<float> Convolution::join(math::matrix<float> A, math::matrix<float> B)
|
||
|
{
|
||
|
int size = A.rowno();
|
||
|
math::matrix<float> C(size, size);
|
||
|
|
||
|
|
||
|
for (int i=0; i < size; i++)
|
||
|
{
|
||
|
for (int j=0; j < size; j++)
|
||
|
{
|
||
|
// Multiplication
|
||
|
C[i][j] = A[i][j] * B[i][j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return C;
|
||
|
}
|
||
|
|
||
|
/** Sums all of the matrixes elements */
|
||
|
const float Convolution::sum(const math::matrix<float> A)
|
||
|
{
|
||
|
float sum = 0.0;
|
||
|
|
||
|
int size = A.rowno();
|
||
|
|
||
|
for (int i=0; i<size; i++)
|
||
|
{
|
||
|
for (int j=0; j<size; j++)
|
||
|
{
|
||
|
// Summation
|
||
|
sum = sum + A[i][j];
|
||
|
}
|
||
|
}
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
|
||
|
/** Returns reflected version of a matrix */
|
||
|
const math::matrix<float> Convolution::reflection(const math::matrix<float> A)
|
||
|
{
|
||
|
int size = A.rowno();
|
||
|
math::matrix<float> C(size, size);
|
||
|
|
||
|
|
||
|
for (int i=0; i < size; i++)
|
||
|
{
|
||
|
for (int j=0; j < size; j++)
|
||
|
{
|
||
|
C[i][j] = A[size-i-1][size-j-1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return C;
|
||
|
}
|