1
0
Fork 0

Zadanie 6

This commit is contained in:
Jarosław Wieczorek 2021-03-30 19:57:22 +02:00
parent dd3358b103
commit e66815ec89
6 changed files with 352 additions and 12 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 604 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

View File

@ -0,0 +1,98 @@
#include "noise_bilateral.h"
NoiseBilateral::NoiseBilateral(PNM* img) :
Convolution(img)
{
}
NoiseBilateral::NoiseBilateral(PNM* img, ImageViewer* iv) :
Convolution(img, iv)
{
}
PNM* NoiseBilateral::transform()
{
int width = image->width();
int height = image->height();
PNM* newImage = new PNM(width, height, image->format());
sigma_d = getParameter("sigma_d").toInt();
sigma_r = getParameter("sigma_r").toInt();
radius = sigma_d;
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
if (image->format() == QImage::Format_Indexed8)
{
// Get calculated value for LChannel and set as new pixel
newImage->setPixel(x, y, calcVal(x, y, LChannel));
}
else
{
// Get calculated values for RGB channels
int r_calc = calcVal(x, y, RChannel);
int g_calc = calcVal(x, y, GChannel);
int b_calc = calcVal(x, y, BChannel);
QColor color = QColor(r_calc, g_calc, b_calc);
newImage->setPixel(x, y, color.rgb());
}
}
}
return newImage;
}
int NoiseBilateral::calcVal(int x, int y, Channel channel)
{
// Set variables
float top = 0;
float bottom = 0;
// Get window
math::matrix<float> window = getWindow(x,y, radius, channel, RepeatEdge);
// Get size of matrix
int window_row_number = window.rowno();
int window_col_number = window.colno();
// Get central value
float central = window[window_row_number / 2][window_col_number / 2];
for (int i = 0; i < window_col_number; i++)
{
for (int j = 0; j < window_row_number; j++)
{
// Get Point in (i, j)
QPoint p1(i,j);
// Get second Point
QPoint p2(window_row_number / 2, window_col_number / 2);
// Calculate top value
top = top + window[i][j] * colorCloseness(window[i][j], central) * spatialCloseness(p1, p2);
// Calculate bottom value
bottom = bottom + colorCloseness(window[i][j], central) * spatialCloseness(p1, p2);
}
}
return top / bottom;
}
float NoiseBilateral::colorCloseness(int val1, int val2)
{
float result = exp(-(pow(val1 - val2, 2) / (2 * sigma_r * sigma_r)));
return result;
}
float NoiseBilateral::spatialCloseness(QPoint point1, QPoint point2)
{
float result = exp(-(pow(point1.x() - point2.x(), 2) + pow(point1.y() - point2.y(), 2) / (2 * sigma_d * sigma_d)));
return result;
}

View File

@ -0,0 +1,112 @@
#include "noise_median.h"
NoiseMedian::NoiseMedian(PNM* img) :
Convolution(img)
{
}
NoiseMedian::NoiseMedian(PNM* img, ImageViewer* iv) :
Convolution(img, iv)
{
}
PNM* NoiseMedian::transform()
{
int width = image->width();
int height = image->height();
PNM* newImage = new PNM(width, height, image->format());
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
if (image->format() == QImage::Format_Indexed8)
{
// Get median value for LChannel and set as new pixel
newImage->setPixel(i, j, getMedian(i, j, LChannel));
}
else
{
// Get median values for RGB channels
int r_med = getMedian(i, j, RChannel);
int g_med = getMedian(i, j, GChannel);
int b_med = getMedian(i, j, BChannel);
// Create new color
QColor color = QColor(r_med, g_med, b_med);
// Set new pixel with rgb color
newImage->setPixel(i, j, color.rgb());
}
}
}
return newImage;
}
int NoiseMedian::getMedian(int x, int y, Channel channel)
{
int radius = getParameter("radius").toInt();
int window_size = 2 * radius + 1;
math::matrix<int> window = getWindow(x, y, window_size, channel, RepeatEdge);
std::vector<int> result; //list does not provide a subscript operator
for(std::size_t i=0; i < window.rowno(); i++){
for(std::size_t j=0; j < window.colno(); j++){
result.push_back(window[i][j]);
}
}
std::sort(result.begin(), result.end());
int middle = result.size()/2;
return result[middle];
}
/*
// Different solution
int NoiseMedian::getMedian(int x, int y, Channel channel)
{
int radius = getParameter("radius").toInt();
int window_size = 2 * radius + 1;
int powSize = size*size;
int window[powSize];
int sr = 0;
int sc = 0;
int lp = 0;
float value;
for (sr = x-radius; sr <= x+radius; sr++)
{
for (sc = y-radius; sc <= y+radius; sc++)
{
QRgb color = getPixel(sr, sc, CyclicEdge);
switch(channel)
{
case LChannel:
value = qGray (color);
break;
case RChannel:
value = qRed (color);
break;
case GChannel:
value = qGreen(color);
break;
case BChannel:
value = qBlue (color);
break;
}
window[lp++] = value;
}
}
std::sort(window, window + powSize);
int center = powSize / 2;
int result = window[center];
return result;
}
*/

View File

@ -19,30 +19,80 @@ PNM* NoiseBilateral::transform()
sigma_d = getParameter("sigma_d").toInt(); sigma_d = getParameter("sigma_d").toInt();
sigma_r = getParameter("sigma_r").toInt(); sigma_r = getParameter("sigma_r").toInt();
radius = sigma_d; radius = sigma_d;
qDebug() << Q_FUNC_INFO << "Not implemented yet!"; for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
if (image->format() == QImage::Format_Indexed8)
{
// Get calculated value for LChannel and set as new pixel
newImage->setPixel(x, y, calcVal(x, y, LChannel));
}
else
{
// Get calculated values for RGB channels
int r_calc = calcVal(x, y, RChannel);
int g_calc = calcVal(x, y, GChannel);
int b_calc = calcVal(x, y, BChannel);
QColor color = QColor(r_calc, g_calc, b_calc);
newImage->setPixel(x, y, color.rgb());
}
}
}
return newImage; return newImage;
} }
int NoiseBilateral::calcVal(int x, int y, Channel channel) int NoiseBilateral::calcVal(int x, int y, Channel channel)
{ {
qDebug() << Q_FUNC_INFO << "Not implemented yet!"; // Set variables
float top = 0;
float bottom = 0;
return 0; // Get window
math::matrix<float> window = getWindow(x,y, radius, channel, RepeatEdge);
// Get size of matrix
int window_row_number = window.rowno();
int window_col_number = window.colno();
// Get central value
float central = window[window_row_number / 2][window_col_number / 2];
for (int i = 0; i < window_col_number; i++)
{
for (int j = 0; j < window_row_number; j++)
{
// Get Point in (i, j)
QPoint p1(i,j);
// Get second Point
QPoint p2(window_row_number / 2, window_col_number / 2);
// Calculate top value
top = top + window[i][j] * colorCloseness(window[i][j], central) * spatialCloseness(p1, p2);
// Calculate bottom value
bottom = bottom + colorCloseness(window[i][j], central) * spatialCloseness(p1, p2);
}
}
return top / bottom;
} }
float NoiseBilateral::colorCloseness(int val1, int val2) float NoiseBilateral::colorCloseness(int val1, int val2)
{ {
qDebug() << Q_FUNC_INFO << "Not implemented yet!"; float result = exp(-(pow(val1 - val2, 2) / (2 * sigma_r * sigma_r)));
return result;
return 0;
} }
float NoiseBilateral::spatialCloseness(QPoint point1, QPoint point2) float NoiseBilateral::spatialCloseness(QPoint point1, QPoint point2)
{ {
qDebug() << Q_FUNC_INFO << "Not implemented yet!"; float result = exp(-(pow(point1.x() - point2.x(), 2) + pow(point1.y() - point2.y(), 2) / (2 * sigma_d * sigma_d)));
return result;
return 0;
} }

View File

@ -17,7 +17,31 @@ PNM* NoiseMedian::transform()
PNM* newImage = new PNM(width, height, image->format()); PNM* newImage = new PNM(width, height, image->format());
qDebug() << Q_FUNC_INFO << "Not implemented yet!";
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
if (image->format() == QImage::Format_Indexed8)
{
// Get median value for LChannel and set as new pixel
newImage->setPixel(i, j, getMedian(i, j, LChannel));
}
else
{
// Get median values for RGB channels
int r_med = getMedian(i, j, RChannel);
int g_med = getMedian(i, j, GChannel);
int b_med = getMedian(i, j, BChannel);
// Create new color
QColor color = QColor(r_med, g_med, b_med);
// Set new pixel with rgb color
newImage->setPixel(i, j, color.rgb());
}
}
}
return newImage; return newImage;
} }
@ -25,8 +49,64 @@ PNM* NoiseMedian::transform()
int NoiseMedian::getMedian(int x, int y, Channel channel) int NoiseMedian::getMedian(int x, int y, Channel channel)
{ {
int radius = getParameter("radius").toInt(); int radius = getParameter("radius").toInt();
int window_size = 2 * radius + 1;
qDebug() << Q_FUNC_INFO << "Not implemented yet!"; math::matrix<int> window = getWindow(x, y, window_size, channel, RepeatEdge);
std::vector<int> result; //list does not provide a subscript operator
return 0; for(std::size_t i=0; i < window.rowno(); i++){
for(std::size_t j=0; j < window.colno(); j++){
result.push_back(window[i][j]);
} }
}
std::sort(result.begin(), result.end());
int middle = result.size()/2;
return result[middle];
}
/*
// Different solution
int NoiseMedian::getMedian(int x, int y, Channel channel)
{
int radius = getParameter("radius").toInt();
int window_size = 2 * radius + 1;
int powSize = size*size;
int window[powSize];
int sr = 0;
int sc = 0;
int lp = 0;
float value;
for (sr = x-radius; sr <= x+radius; sr++)
{
for (sc = y-radius; sc <= y+radius; sc++)
{
QRgb color = getPixel(sr, sc, CyclicEdge);
switch(channel)
{
case LChannel:
value = qGray (color);
break;
case RChannel:
value = qRed (color);
break;
case GChannel:
value = qGreen(color);
break;
case BChannel:
value = qBlue (color);
break;
}
window[lp++] = value;
}
}
std::sort(window, window + powSize);
int center = powSize / 2;
int result = window[center];
return result;
}
*/