1
0
lpo-image-processing/06/do_sprawdzenia/cpp/noise_bilateral.cpp
2021-03-30 19:57:22 +02:00

99 lines
2.6 KiB
C++

#include "noise_bilateral.h"
NoiseBilateral::NoiseBilateral(PNM* img) :
Convolution(img)
{
}
NoiseBilateral::NoiseBilateral(PNM* img, ImageViewer* iv) :
Convolution(img, iv)
{
}
PNM* NoiseBilateral::transform()
{
int width = image->width();
int height = image->height();
PNM* newImage = new PNM(width, height, image->format());
sigma_d = getParameter("sigma_d").toInt();
sigma_r = getParameter("sigma_r").toInt();
radius = sigma_d;
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
if (image->format() == QImage::Format_Indexed8)
{
// Get calculated value for LChannel and set as new pixel
newImage->setPixel(x, y, calcVal(x, y, LChannel));
}
else
{
// Get calculated values for RGB channels
int r_calc = calcVal(x, y, RChannel);
int g_calc = calcVal(x, y, GChannel);
int b_calc = calcVal(x, y, BChannel);
QColor color = QColor(r_calc, g_calc, b_calc);
newImage->setPixel(x, y, color.rgb());
}
}
}
return newImage;
}
int NoiseBilateral::calcVal(int x, int y, Channel channel)
{
// Set variables
float top = 0;
float bottom = 0;
// Get window
math::matrix<float> window = getWindow(x,y, radius, channel, RepeatEdge);
// Get size of matrix
int window_row_number = window.rowno();
int window_col_number = window.colno();
// Get central value
float central = window[window_row_number / 2][window_col_number / 2];
for (int i = 0; i < window_col_number; i++)
{
for (int j = 0; j < window_row_number; j++)
{
// Get Point in (i, j)
QPoint p1(i,j);
// Get second Point
QPoint p2(window_row_number / 2, window_col_number / 2);
// Calculate top value
top = top + window[i][j] * colorCloseness(window[i][j], central) * spatialCloseness(p1, p2);
// Calculate bottom value
bottom = bottom + colorCloseness(window[i][j], central) * spatialCloseness(p1, p2);
}
}
return top / bottom;
}
float NoiseBilateral::colorCloseness(int val1, int val2)
{
float result = exp(-(pow(val1 - val2, 2) / (2 * sigma_r * sigma_r)));
return result;
}
float NoiseBilateral::spatialCloseness(QPoint point1, QPoint point2)
{
float result = exp(-(pow(point1.x() - point2.x(), 2) + pow(point1.y() - point2.y(), 2) / (2 * sigma_d * sigma_d)));
return result;
}