Builtin operator handlers definiton now in separate file

Interpreter constructor and file in general is very unreadable
and busy now. To limit noise separate builtin operators from
src/interpreter.cc into their own file src/builtin_operators.cc

This also allows to see which functions are used as implementation
detail of which operations.
This commit is contained in:
Robert Bendun 2022-08-18 22:21:04 +02:00
parent a3d0a942e4
commit 831de5abe5
4 changed files with 276 additions and 258 deletions

View File

@ -9,6 +9,7 @@ LDFLAGS=-L./lib/midi/
LDLIBS=-lmidi-alsa -lasound -lpthread
Obj= \
builtin_operators.o \
context.o \
environment.o \
errors.o \

196
src/builtin_operators.cc Normal file
View File

@ -0,0 +1,196 @@
#include <musique.hh>
/// Intrinsic implementation primitive to ease operation vectorization
/// @invariant args.size() == 2
Result<Value> vectorize(auto &&operation, Interpreter &interpreter, std::vector<Value> args)
{
assert(args.size() == 2, "Vectorization primitive only supports two arguments");
Array array;
auto lhs = std::move(args.front());
auto rhs = std::move(args.back());
if (is_indexable(lhs.type) && !is_indexable(rhs.type)) {
Array array;
for (auto i = 0u; i < lhs.size(); ++i) {
array.elements.push_back(
Try(operation(interpreter, { Try(lhs.index(interpreter, i)), rhs })));
}
return Value::from(std::move(array));
}
for (auto i = 0u; i < rhs.size(); ++i) {
array.elements.push_back(
Try(operation(interpreter, { lhs, Try(rhs.index(interpreter, i)) })));
}
return Value::from(std::move(array));
}
/// Creates implementation of plus/minus operator that support following operations:
/// number, number -> number (standard math operations)
/// n: number, m: music -> music
/// m: music, n: number -> music moves m by n semitones (+ goes up, - goes down)
template<typename Binary_Operation>
static Result<Value> plus_minus_operator(Interpreter &interpreter, std::vector<Value> args)
{
static_assert(std::is_same_v<Binary_Operation, std::plus<>> || std::is_same_v<Binary_Operation, std::minus<>>,
"Error reporting depends on only one of this two types beeing provided");
using NN = Shape<Value::Type::Number, Value::Type::Number>;
using MN = Shape<Value::Type::Music, Value::Type::Number>;
using NM = Shape<Value::Type::Number, Value::Type::Music>;
if (NN::typecheck(args)) {
auto [a, b] = NN::move_from(args);
return Value::from(Binary_Operation{}(std::move(a), std::move(b)));
}
if (MN::typecheck(args)) {
auto [chord, offset] = MN::move_from(args);
for (auto &note : chord.notes) {
note.base = Binary_Operation{}(note.base, offset.as_int());
note.simplify_inplace();
}
return Value::from(std::move(chord));
}
if (NM::typecheck(args)) {
auto [offset, chord] = NM::move_from(args);
for (auto &note : chord.notes) {
note.base = Binary_Operation{}(offset.as_int(), note.base);
note.simplify_inplace();
}
return Value::from(std::move(chord));
}
if (may_be_vectorized(args)) {
return vectorize(plus_minus_operator<Binary_Operation>, interpreter, std::move(args));
}
// TODO Limit possibilities based on provided types
static_assert(std::is_same_v<std::plus<>, Binary_Operation> || std::is_same_v<std::minus<>, Binary_Operation>,
"Error message printing only supports operators given above");
return Error {
.details = errors::Unsupported_Types_For {
.type = errors::Unsupported_Types_For::Operator,
.name = std::is_same_v<std::plus<>, Binary_Operation> ? "+" : "-",
.possibilities = {
"(number, number) -> number",
"(music, number) -> music",
"(number, music) -> music",
"(array, number|music) -> array",
"(number|music, array) -> array",
}
},
.location = {}, // TODO fill location
};
}
template<typename Binary_Operation, char ...Chars>
static Result<Value> binary_operator(Interpreter& interpreter, std::vector<Value> args)
{
static constexpr char Name[] = { Chars..., '\0' };
using NN = Shape<Value::Type::Number, Value::Type::Number>;
if (NN::typecheck(args)) {
auto [lhs, rhs] = NN::move_from(args);
return Value::from(Binary_Operation{}(lhs, rhs));
}
if (may_be_vectorized(args)) {
return vectorize(binary_operator<Binary_Operation, Chars...>, interpreter, args);
}
return Error {
.details = errors::Unsupported_Types_For {
.type = errors::Unsupported_Types_For::Operator,
.name = Name,
.possibilities = {
"(number, number) -> number",
"(array, number) -> array",
"(number, array) -> array"
}
},
.location = {}, // TODO fill location
};
}
template<typename Binary_Predicate>
static Result<Value> equality_operator(Interpreter&, std::vector<Value> args)
{
assert(args.size() == 2, "(in)Equality only allows for 2 operands"); // TODO(assert)
return Value::from(Binary_Predicate{}(std::move(args.front()), std::move(args.back())));
}
template<typename Binary_Predicate>
static Result<Value> comparison_operator(Interpreter&, std::vector<Value> args)
{
assert(args.size() == 2, "Operator handler cannot accept any shape different then 2 arguments");
return Value::from(Binary_Predicate{}(args.front(), args.back()));
}
/// Operators definition table
static constexpr auto Operators = std::array {
std::tuple { "+", plus_minus_operator<std::plus<>> },
std::tuple { "-", plus_minus_operator<std::minus<>> },
std::tuple { "*", binary_operator<std::multiplies<>, '*'> },
std::tuple { "/", binary_operator<std::divides<>, '/'> },
std::tuple { "<", comparison_operator<std::less<>> },
std::tuple { ">", comparison_operator<std::greater<>> },
std::tuple { "<=", comparison_operator<std::less_equal<>> },
std::tuple { ">=", comparison_operator<std::greater_equal<>> },
std::tuple { "==", equality_operator<std::equal_to<>> },
std::tuple { "!=", equality_operator<std::not_equal_to<>> },
std::tuple { ".",
+[](Interpreter &i, std::vector<Value> args) -> Result<Value> {
assert(args.size() == 2, "Operator . requires two arguments"); // TODO(assert)
assert(args.back().type == Value::Type::Number, "Only numbers can be used for indexing"); // TODO(assert)
return std::move(args.front()).index(i, std::move(args.back()).n.as_int());
}
},
std::tuple { "&",
+[](Interpreter&, std::vector<Value> args) -> Result<Value> {
using Chord_Chord = Shape<Value::Type::Music, Value::Type::Music>;
if (Chord_Chord::typecheck(args)) {
auto [lhs, rhs] = Chord_Chord::move_from(args);
auto &l = lhs.notes;
auto &r = rhs.notes;
// Append one set of notes to another to make bigger chord!
l.reserve(l.size() + r.size());
std::move(r.begin(), r.end(), std::back_inserter(l));
return Value::from(lhs);
}
return Error {
.details = errors::Unsupported_Types_For {
.type = errors::Unsupported_Types_For::Operator,
.name = "&",
.possibilities = {
"(music, music) -> music",
}
},
.location = {}
};
}
},
};
// All operators should be defined here except 'and' and 'or' which handle evaluation differently
// and are need unevaluated expressions for their proper evaluation. Exclusion of them is marked
// as subtraction of total excluded operators from expected constant
static_assert(Operators.size() == Operators_Count - 2, "All operators handlers are defined here");
void Interpreter::register_builtin_operators()
{
// Set all predefined operators into operators array
for (auto &[name, fptr] : Operators) { operators[name] = fptr; }
}

View File

@ -68,60 +68,6 @@ void Interpreter::register_callbacks()
});
}
/// Intrinsic implementation primitive providing a short way to check if arguments match required type signature
static inline bool typecheck(std::vector<Value> const& args, auto const& ...expected_types)
{
return (args.size() == sizeof...(expected_types)) &&
[&args, expected_types...]<std::size_t ...I>(std::index_sequence<I...>) {
return ((expected_types == args[I].type) && ...);
} (std::make_index_sequence<sizeof...(expected_types)>{});
}
/// Intrinsic implementation primitive providing a short way to move values based on matched type signature
static inline bool typecheck_front(std::vector<Value> const& args, auto const& ...expected_types)
{
return (args.size() >= sizeof...(expected_types)) &&
[&args, expected_types...]<std::size_t ...I>(std::index_sequence<I...>) {
return ((expected_types == args[I].type) && ...);
} (std::make_index_sequence<sizeof...(expected_types)>{});
}
/// Intrinsic implementation primitive providing a short way to move values based on matched type signature
template<auto ...Types>
static inline auto move_from(std::vector<Value>& args)
{
return [&args]<std::size_t ...I>(std::index_sequence<I...>) {
return std::tuple { (std::move(args[I]).*(Member_For_Value_Type<Types>::value)) ... };
} (std::make_index_sequence<sizeof...(Types)>{});
}
/// Shape abstraction to define what types are required once
template<auto ...Types>
struct Shape
{
static inline auto move_from(std::vector<Value>& args) { return ::move_from<Types...>(args); }
static inline auto typecheck(std::vector<Value>& args) { return ::typecheck(args, Types...); }
static inline auto typecheck_front(std::vector<Value>& args) { return ::typecheck_front(args, Types...); }
};
/// Returns if type can be indexed
static constexpr bool is_indexable(Value::Type type)
{
return type == Value::Type::Array || type == Value::Type::Block;
}
/// Returns if type can be called
static constexpr bool is_callable(Value::Type type)
{
return type == Value::Type::Block || type == Value::Type::Intrinsic;
}
/// Binary operation may be vectorized when there are two argument which one is indexable and other is not
static bool may_be_vectorized(std::vector<Value> const& args)
{
return args.size() == 2 && (is_indexable(args[0].type) != is_indexable(args[1].type));
}
static Result<Array> into_flat_array(Interpreter &i, std::span<Value> args)
{
Array array;
@ -149,136 +95,6 @@ static Result<Array> into_flat_array(Interpreter &i, std::vector<Value> args)
return into_flat_array(i, std::span(args));
}
/// Intrinsic implementation primitive to ease operation vectorization
/// @invariant args.size() == 2
Result<Value> vectorize(auto &&operation, Interpreter &interpreter, std::vector<Value> args)
{
assert(args.size() == 2, "Vectorization primitive only supports two arguments");
Array array;
auto lhs = std::move(args.front());
auto rhs = std::move(args.back());
if (is_indexable(lhs.type) && !is_indexable(rhs.type)) {
Array array;
for (auto i = 0u; i < lhs.size(); ++i) {
array.elements.push_back(
Try(operation(interpreter, { Try(lhs.index(interpreter, i)), rhs })));
}
return Value::from(std::move(array));
}
for (auto i = 0u; i < rhs.size(); ++i) {
array.elements.push_back(
Try(operation(interpreter, { lhs, Try(rhs.index(interpreter, i)) })));
}
return Value::from(std::move(array));
}
/// Creates implementation of plus/minus operator that support following operations:
/// number, number -> number (standard math operations)
/// n: number, m: music -> music
/// m: music, n: number -> music moves m by n semitones (+ goes up, - goes down)
template<typename Binary_Operation>
static Result<Value> plus_minus_operator(Interpreter &interpreter, std::vector<Value> args)
{
static_assert(std::is_same_v<Binary_Operation, std::plus<>> || std::is_same_v<Binary_Operation, std::minus<>>,
"Error reporting depends on only one of this two types beeing provided");
using NN = Shape<Value::Type::Number, Value::Type::Number>;
using MN = Shape<Value::Type::Music, Value::Type::Number>;
using NM = Shape<Value::Type::Number, Value::Type::Music>;
if (NN::typecheck(args)) {
auto [a, b] = NN::move_from(args);
return Value::from(Binary_Operation{}(std::move(a), std::move(b)));
}
if (MN::typecheck(args)) {
auto [chord, offset] = MN::move_from(args);
for (auto &note : chord.notes) {
note.base = Binary_Operation{}(note.base, offset.as_int());
note.simplify_inplace();
}
return Value::from(std::move(chord));
}
if (NM::typecheck(args)) {
auto [offset, chord] = NM::move_from(args);
for (auto &note : chord.notes) {
note.base = Binary_Operation{}(offset.as_int(), note.base);
note.simplify_inplace();
}
return Value::from(std::move(chord));
}
if (may_be_vectorized(args)) {
return vectorize(plus_minus_operator<Binary_Operation>, interpreter, std::move(args));
}
// TODO Limit possibilities based on provided types
static_assert(std::is_same_v<std::plus<>, Binary_Operation> || std::is_same_v<std::minus<>, Binary_Operation>,
"Error message printing only supports operators given above");
return Error {
.details = errors::Unsupported_Types_For {
.type = errors::Unsupported_Types_For::Operator,
.name = std::is_same_v<std::plus<>, Binary_Operation> ? "+" : "-",
.possibilities = {
"(number, number) -> number",
"(music, number) -> music",
"(number, music) -> music",
"(array, number|music) -> array",
"(number|music, array) -> array",
}
},
.location = {}, // TODO fill location
};
}
template<typename Binary_Operation, char ...Chars>
static Result<Value> binary_operator(Interpreter& interpreter, std::vector<Value> args)
{
static constexpr char Name[] = { Chars..., '\0' };
using NN = Shape<Value::Type::Number, Value::Type::Number>;
if (NN::typecheck(args)) {
auto [lhs, rhs] = NN::move_from(args);
return Value::from(Binary_Operation{}(lhs, rhs));
}
if (may_be_vectorized(args)) {
return vectorize(binary_operator<Binary_Operation, Chars...>, interpreter, args);
}
return Error {
.details = errors::Unsupported_Types_For {
.type = errors::Unsupported_Types_For::Operator,
.name = Name,
.possibilities = {
"(number, number) -> number",
"(array, number) -> array",
"(number, array) -> array"
}
},
.location = {}, // TODO fill location
};
}
template<typename Binary_Predicate>
static Result<Value> equality_operator(Interpreter&, std::vector<Value> args)
{
assert(args.size() == 2, "(in)Equality only allows for 2 operands"); // TODO(assert)
return Value::from(Binary_Predicate{}(std::move(args.front()), std::move(args.back())));
}
template<typename Binary_Predicate>
static Result<Value> comparison_operator(Interpreter&, std::vector<Value> args)
{
assert(args.size() == 2, "Operator handler cannot accept any shape different then 2 arguments");
return Value::from(Binary_Predicate{}(args.front(), args.back()));
}
/// Registers constants like `fn = full note = 1/1`
static inline void register_note_length_constants()
@ -710,68 +526,9 @@ error:
global.force_define("pgmchange", pgmchange);
global.force_define("program_change", pgmchange);
}
// Operators definition table
static constexpr auto Operators = std::array {
std::tuple { "+", plus_minus_operator<std::plus<>> },
std::tuple { "-", plus_minus_operator<std::minus<>> },
std::tuple { "*", binary_operator<std::multiplies<>, '*'> },
std::tuple { "/", binary_operator<std::divides<>, '/'> },
std::tuple { "<", comparison_operator<std::less<>> },
std::tuple { ">", comparison_operator<std::greater<>> },
std::tuple { "<=", comparison_operator<std::less_equal<>> },
std::tuple { ">=", comparison_operator<std::greater_equal<>> },
std::tuple { "==", equality_operator<std::equal_to<>> },
std::tuple { "!=", equality_operator<std::not_equal_to<>> },
std::tuple { ".",
+[](Interpreter &i, std::vector<Value> args) -> Result<Value> {
assert(args.size() == 2, "Operator . requires two arguments"); // TODO(assert)
assert(args.back().type == Value::Type::Number, "Only numbers can be used for indexing"); // TODO(assert)
return std::move(args.front()).index(i, std::move(args.back()).n.as_int());
}
},
std::tuple { "&",
+[](Interpreter&, std::vector<Value> args) -> Result<Value> {
using Chord_Chord = Shape<Value::Type::Music, Value::Type::Music>;
if (Chord_Chord::typecheck(args)) {
auto [lhs, rhs] = Chord_Chord::move_from(args);
auto &l = lhs.notes;
auto &r = rhs.notes;
// Append one set of notes to another to make bigger chord!
l.reserve(l.size() + r.size());
std::move(r.begin(), r.end(), std::back_inserter(l));
return Value::from(lhs);
}
return Error {
.details = errors::Unsupported_Types_For {
.type = errors::Unsupported_Types_For::Operator,
.name = "&",
.possibilities = {
"(music, music) -> music",
}
},
.location = {}
};
}
},
};
// All operators should be defined here except 'and' and 'or' which handle evaluation differently
// and are need unevaluated expressions for their proper evaluation. Exclusion of them is marked
// as subtraction of total excluded operators from expected constant
static_assert(Operators.size() == Operators_Count - 2, "All operators handlers are defined here");
// Set all predefined operators into operators array
for (auto &[name, fptr] : Operators) { operators[name] = fptr; }
}
register_builtin_operators();
}
Interpreter::~Interpreter()

View File

@ -952,6 +952,16 @@ struct Interpreter
/// Play note resolving any missing parameters with context via `midi_connection` member.
void play(Chord);
/// Add to global interpreter scope all builtin function definitions
///
/// Invoked during construction
void register_builtin_functions();
/// Add to interpreter operators table all operators
///
/// Invoked during construction
void register_builtin_operators();
};
namespace errors
@ -959,3 +969,57 @@ namespace errors
[[noreturn]]
void all_tokens_were_not_parsed(std::span<Token>);
}
/// Intrinsic implementation primitive providing a short way to check if arguments match required type signature
static inline bool typecheck(std::vector<Value> const& args, auto const& ...expected_types)
{
return (args.size() == sizeof...(expected_types)) &&
[&args, expected_types...]<std::size_t ...I>(std::index_sequence<I...>) {
return ((expected_types == args[I].type) && ...);
} (std::make_index_sequence<sizeof...(expected_types)>{});
}
/// Intrinsic implementation primitive providing a short way to move values based on matched type signature
static inline bool typecheck_front(std::vector<Value> const& args, auto const& ...expected_types)
{
return (args.size() >= sizeof...(expected_types)) &&
[&args, expected_types...]<std::size_t ...I>(std::index_sequence<I...>) {
return ((expected_types == args[I].type) && ...);
} (std::make_index_sequence<sizeof...(expected_types)>{});
}
/// Intrinsic implementation primitive providing a short way to move values based on matched type signature
template<auto ...Types>
static inline auto move_from(std::vector<Value>& args)
{
return [&args]<std::size_t ...I>(std::index_sequence<I...>) {
return std::tuple { (std::move(args[I]).*(Member_For_Value_Type<Types>::value)) ... };
} (std::make_index_sequence<sizeof...(Types)>{});
}
/// Shape abstraction to define what types are required once
template<auto ...Types>
struct Shape
{
static inline auto move_from(std::vector<Value>& args) { return ::move_from<Types...>(args); }
static inline auto typecheck(std::vector<Value>& args) { return ::typecheck(args, Types...); }
static inline auto typecheck_front(std::vector<Value>& args) { return ::typecheck_front(args, Types...); }
};
/// Returns if type can be indexed
static constexpr bool is_indexable(Value::Type type)
{
return type == Value::Type::Array || type == Value::Type::Block;
}
/// Returns if type can be called
static constexpr bool is_callable(Value::Type type)
{
return type == Value::Type::Block || type == Value::Type::Intrinsic;
}
/// Binary operation may be vectorized when there are two argument which one is indexable and other is not
static inline bool may_be_vectorized(std::vector<Value> const& args)
{
return args.size() == 2 && (is_indexable(args[0].type) != is_indexable(args[1].type));
}