import csv import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt dates = [] prices = [] def get_data(filename): with open(filename, 'r') as csvfile: csvFileReader = csv.reader(csvfile) next(csvFileReader) for row in csvFileReader: dates.append(int(row[0].split('-')[1])) prices.append(float(row[1])) return def predict_prices(dates, prices, x): dates = np.reshape(dates, (len(dates), 1)) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree = 2) svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin.fit(dates, prices) svr_poly.fit(dates, prices) svr_rbf.fit(dates, prices) plt.scatter(dates, prices, color='black', label='Data') plt.plot(dates, svr_lin.predict(dates), color='green', label='linear model') plt.plot(dates, svr_poly.predict(dates), color='blue', label='Polynomial model') plt.plot(dates, svr_rbf.predict(dates), color='red', label='RBF model') plt.xlabel('Date') plt.ylabel('Price') plt.title('Support Vector Regression') plt.legend() plt.show() return svr_lin.predict(x)[0], svr_poly.predict(x)[0], svr_rbf.predict(x)[0] get_data('static/akcjeWIG40.csv') print(dates) print(prices) predicted_price = predict_prices(dates, prices, 29) print(predicted_price)