56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
import numpy as np
|
|
from sklearn.svm import SVR
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
X = np.sort(5 * np.random.rand(40, 1), axis=0)
|
|
y = np.sin(X).ravel()
|
|
|
|
# add noise to targets
|
|
y[::5] += 3 * (0.5 - np.random.rand(8))
|
|
svr_rbf = SVR(kernel="rbf", C=100, gamma=0.1, epsilon=0.1)
|
|
svr_lin = SVR(kernel="linear", C=100, gamma="auto")
|
|
svr_poly = SVR(kernel="poly", C=100, gamma="auto", degree=3, epsilon=0.1, coef0=1)
|
|
lw = 2
|
|
|
|
svrs = [svr_rbf, svr_lin, svr_poly]
|
|
kernel_label = ["RBF", "Linear", "Polynomial"]
|
|
model_color = ["m", "c", "g"]
|
|
|
|
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True)
|
|
for ix, svr in enumerate(svrs):
|
|
axes[ix].plot(
|
|
X,
|
|
svr.fit(X, y).predict(X),
|
|
color=model_color[ix],
|
|
lw=lw,
|
|
label="{} model".format(kernel_label[ix]),
|
|
)
|
|
axes[ix].scatter(
|
|
X[svr.support_],
|
|
y[svr.support_],
|
|
facecolor="none",
|
|
edgecolor=model_color[ix],
|
|
s=50,
|
|
label="{} support vectors".format(kernel_label[ix]),
|
|
)
|
|
axes[ix].scatter(
|
|
X[np.setdiff1d(np.arange(len(X)), svr.support_)],
|
|
y[np.setdiff1d(np.arange(len(X)), svr.support_)],
|
|
facecolor="none",
|
|
edgecolor="k",
|
|
s=50,
|
|
label="other training data",
|
|
)
|
|
axes[ix].legend(
|
|
loc="upper center",
|
|
bbox_to_anchor=(0.5, 1.1),
|
|
ncol=1,
|
|
fancybox=True,
|
|
shadow=True,
|
|
)
|
|
|
|
fig.text(0.5, 0.04, "data", ha="center", va="center")
|
|
fig.text(0.06, 0.5, "target", ha="center", va="center", rotation="vertical")
|
|
fig.suptitle("Support Vector Regression", fontsize=14)
|
|
plt.show() |