187 lines
7.6 KiB
C#
187 lines
7.6 KiB
C#
using System;
|
|
using System.IO;
|
|
using System.Linq;
|
|
using System.Reflection;
|
|
using System.Text;
|
|
using System.Threading.Tasks;
|
|
using Microsoft.ML;
|
|
using Microsoft.ML.Data;
|
|
using Microsoft.ML.Trainers.LightGbm;
|
|
|
|
|
|
class MLModel
|
|
{
|
|
private static MLContext mlContext = new MLContext(seed: 1);
|
|
|
|
private static string path_base = FindPath();
|
|
|
|
private static string path = System.IO.Path.Combine(path_base, "Content/ML/Fertilizer_Prediction.csv");
|
|
private static string modelpath = System.IO.Path.Combine(path_base, "Content/ML/MLmodel");
|
|
private static string report = System.IO.Path.Combine(path_base, "Content/ML/report");
|
|
|
|
private static string pathBig = System.IO.Path.Combine(path_base, "Content/ML/BigFertPredict.csv");
|
|
private static string modelpathBig = System.IO.Path.Combine(path_base, "Content/ML/MLmodelBig");
|
|
private static string reportBig = System.IO.Path.Combine(path_base, "Content/ML/report_BigModel");
|
|
|
|
// Loading data, creatin and saving ML model for smaller dataset (100)
|
|
public static void CreateModel()
|
|
{
|
|
|
|
IDataView trainingDataView = mlContext.Data.LoadFromTextFile<ModelInput>(
|
|
path: path,
|
|
hasHeader: true,
|
|
separatorChar: ',',
|
|
allowQuoting: true,
|
|
allowSparse: false);
|
|
|
|
ModelInput sample = mlContext.Data.CreateEnumerable<ModelInput>(trainingDataView, false).ElementAt(0);
|
|
ITransformer MLModel = BuildAndTrain(mlContext, trainingDataView, sample, report);
|
|
SaveModel(mlContext, MLModel, modelpath, trainingDataView.Schema);
|
|
}
|
|
|
|
// ... for bigger dataset (1600)
|
|
public static void CreateBigModel()
|
|
{
|
|
|
|
IDataView trainingDataView = mlContext.Data.LoadFromTextFile<BigModelInput>(
|
|
path: pathBig,
|
|
hasHeader: true,
|
|
separatorChar: ',',
|
|
allowQuoting: true,
|
|
allowSparse: false);
|
|
|
|
BigModelInput sample = mlContext.Data.CreateEnumerable<BigModelInput>(trainingDataView, false).ElementAt(0);
|
|
ITransformer MLModel = BuildAndTrain(mlContext, trainingDataView, sample, reportBig);
|
|
SaveModel(mlContext, MLModel, modelpathBig, trainingDataView.Schema);
|
|
}
|
|
|
|
// Building and training ML model, very small dataset (100 entries)
|
|
public static ITransformer BuildAndTrain(MLContext mLContext, IDataView trainingDataView, ModelInput sample, string reportPath)
|
|
{
|
|
|
|
var options = new LightGbmMulticlassTrainer.Options
|
|
{
|
|
MaximumBinCountPerFeature = 8,
|
|
LearningRate = 0.00025,
|
|
NumberOfIterations = 40000,
|
|
NumberOfLeaves = 10,
|
|
LabelColumnName = "Fertilizer_NameF",
|
|
FeatureColumnName = "Features",
|
|
|
|
Booster = new DartBooster.Options()
|
|
{
|
|
MaximumTreeDepth = 10
|
|
}
|
|
};
|
|
|
|
var pipeline = mlContext.Transforms
|
|
.Text.FeaturizeText("Soil_TypeF", "Soil_Type")
|
|
.Append(mlContext.Transforms.Text.FeaturizeText("Crop_TypeF", "Crop_Type"))
|
|
.Append(mlContext.Transforms.Concatenate("Features", "Temperature", "Humidity", "Moisture", "Soil_TypeF", "Crop_TypeF", "Nitrogen", "Potassium", "Phosphorous"))
|
|
.Append(mlContext.Transforms.Conversion.MapValueToKey("Fertilizer_NameF", "Fertilizer_Name"), TransformerScope.TrainTest)
|
|
.AppendCacheCheckpoint(mLContext)
|
|
.Append(mLContext.MulticlassClassification.Trainers.LightGbm(options))
|
|
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel", "PredictedLabel"));
|
|
|
|
Evaluate(mlContext, trainingDataView, pipeline, 10, reportPath, "Fertilizer_NameF");
|
|
ITransformer MLModel = pipeline.Fit(trainingDataView);
|
|
|
|
return MLModel;
|
|
}
|
|
|
|
//Building and training ML model, moderate size dataset (1600 entries)
|
|
public static ITransformer BuildAndTrain(MLContext mLContext, IDataView trainingDataView, BigModelInput sample, string reportPath)
|
|
{
|
|
|
|
var options = new LightGbmMulticlassTrainer.Options
|
|
{
|
|
MaximumBinCountPerFeature = 10,
|
|
LearningRate = 0.001,
|
|
NumberOfIterations = 10000,
|
|
NumberOfLeaves = 12,
|
|
LabelColumnName = "ClassF",
|
|
FeatureColumnName = "Features",
|
|
|
|
Booster = new DartBooster.Options()
|
|
{
|
|
MaximumTreeDepth = 12
|
|
}
|
|
};
|
|
|
|
var pipeline = mlContext.Transforms
|
|
.Concatenate("Features", "Ca", "Mg", "K", "S", "N", "Lime", "C", "P", "Moisture")
|
|
.Append(mLContext.Transforms.NormalizeMinMax("Features"))
|
|
.Append(mlContext.Transforms.Conversion.MapValueToKey("ClassF", "Class"), TransformerScope.TrainTest)
|
|
.AppendCacheCheckpoint(mLContext)
|
|
.Append(mLContext.MulticlassClassification.Trainers.LightGbm(options))
|
|
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel", "PredictedLabel"));
|
|
|
|
Evaluate(mlContext, trainingDataView, pipeline, 8, reportPath, "ClassF");
|
|
ITransformer MLModel = pipeline.Fit(trainingDataView);
|
|
|
|
return MLModel;
|
|
}
|
|
|
|
public static ITransformer TrainModel(MLContext mlContext, IDataView trainingDataView, IEstimator<ITransformer> trainingPipeline)
|
|
{
|
|
ITransformer model = trainingPipeline.Fit(trainingDataView);
|
|
return model;
|
|
}
|
|
|
|
// Evaluate and save results to a text file
|
|
public static void Evaluate(MLContext mlContext, IDataView trainingDataView, IEstimator<ITransformer> trainingPipeline, int folds, string reportPath, string labelColumnName)
|
|
{
|
|
var crossVal = mlContext.MulticlassClassification.CrossValidate(trainingDataView, trainingPipeline, numberOfFolds: folds, labelColumnName: labelColumnName);
|
|
|
|
var metricsInMultipleFolds = crossVal.Select(r => r.Metrics);
|
|
|
|
var MicroAccuracyValues = metricsInMultipleFolds.Select(m => m.MicroAccuracy);
|
|
var LogLossValues = metricsInMultipleFolds.Select(m => m.LogLoss);
|
|
var LogLossReductionValues = metricsInMultipleFolds.Select(m => m.LogLossReduction);
|
|
string MicroAccuracyAverage = MicroAccuracyValues.Average().ToString("0.######");
|
|
string LogLossAvg = LogLossValues.Average().ToString("0.######");
|
|
string LogLossReductionAvg = LogLossReductionValues.Average().ToString("0.######");
|
|
|
|
var report = File.CreateText(reportPath);
|
|
report.Write("Micro Accuracy: " + MicroAccuracyAverage +'\n'+ "LogLoss Average: " + LogLossAvg +'\n'+ "LogLoss Reduction: " + LogLossReductionAvg, 0, 0);
|
|
report.Flush();
|
|
report.Close();
|
|
}
|
|
|
|
|
|
public static void SaveModel(MLContext mlContext, ITransformer Model, string modelPath, DataViewSchema modelInputSchema)
|
|
{
|
|
mlContext.Model.Save(Model, modelInputSchema, modelPath);
|
|
}
|
|
|
|
public static ITransformer LoadModel(bool isBig)
|
|
{
|
|
if (isBig)
|
|
return mlContext.Model.Load(modelpathBig, out DataViewSchema inputSchema);
|
|
else
|
|
return mlContext.Model.Load(modelpath, out DataViewSchema inputSchema);
|
|
}
|
|
|
|
public static PredictionEngine<ModelInput, ModelOutput> CreateEngine()
|
|
{
|
|
ITransformer mlModel = LoadModel(false);
|
|
return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);
|
|
}
|
|
|
|
private static string FindPath()
|
|
{
|
|
string path = System.IO.Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location).ToString();
|
|
while (true)
|
|
{
|
|
path = Directory.GetParent(path).ToString();
|
|
if (path.EndsWith("\\Game1"))
|
|
{
|
|
return path;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|