134 lines
6.3 KiB
C#
134 lines
6.3 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using System.IO;
|
|
using System.Linq;
|
|
using System.Text;
|
|
using System.Threading.Tasks;
|
|
using Microsoft.ML;
|
|
using Microsoft.ML.Data;
|
|
using Microsoft.ML.Trainers.LightGbm;
|
|
|
|
namespace Game1.Sources.ML_Joel
|
|
{
|
|
class Model
|
|
{
|
|
private static MLContext mlContext = new MLContext(seed: 1);
|
|
/*
|
|
private static string path = "C:/Users/Joel/source/repos/Oskars Repo/Game1/Content/ML/Rainfall.csv";
|
|
private static string modelpath = "C:/Users/Joel/source/repos/Oskars Repo/Game1/Content/ML/MLmodel_Joel";
|
|
private static string report = "C:/Users/Joel/source/repos/Oskars Repo/Game1/Content/ML/report_Joel";
|
|
*/
|
|
private static string path = "C:/Users/Oskar/source/repos/PotatoPlanFinal/Game1/Content/ML/Rainfall.csv";
|
|
private static string modelpath = "C:/Users/Oskar/source/repos/PotatoPlanFinal/Game1/Content/ML/MLmodel_Joel";
|
|
private static string report = "C:/Users/Oskar/source/repos/PotatoPlanFinal/Game1/Content/ML/report_Joel";
|
|
|
|
// Loading data, creatin and saving ML model for smaller dataset (100)
|
|
public static void CreateModel()
|
|
{
|
|
|
|
IDataView trainingDataView = mlContext.Data.LoadFromTextFile<Input>(
|
|
path: path,
|
|
hasHeader: true,
|
|
separatorChar: ',',
|
|
allowQuoting: true,
|
|
allowSparse: false);
|
|
|
|
var splitData = mlContext.Data.TrainTestSplit(trainingDataView, testFraction: 0.2);
|
|
trainingDataView = splitData.TrainSet;
|
|
IDataView testDataView = splitData.TestSet;
|
|
Input sample = mlContext.Data.CreateEnumerable<Input>(trainingDataView, false).ElementAt(0);
|
|
ITransformer MLModel = BuildAndTrain(mlContext, trainingDataView, testDataView, sample, report);
|
|
SaveModel(mlContext, MLModel, modelpath, trainingDataView.Schema);
|
|
}
|
|
|
|
// Building and training ML model
|
|
public static ITransformer BuildAndTrain(MLContext mLContext, IDataView trainingDataView, IDataView testDataView, Input sample, string reportPath)
|
|
{
|
|
|
|
var options = new LightGbmRegressionTrainer.Options
|
|
{
|
|
MaximumBinCountPerFeature = 40,
|
|
LearningRate = 0.00020,
|
|
NumberOfIterations = 20000,
|
|
NumberOfLeaves = 55,
|
|
LabelColumnName = "Production",
|
|
FeatureColumnName = "Features",
|
|
//EarlyStoppingRound = 20,
|
|
//UseCategoricalSplit = true,
|
|
//L2CategoricalRegularization = 1,
|
|
//CategoricalSmoothing = 1,
|
|
|
|
Booster = new DartBooster.Options()
|
|
{
|
|
MaximumTreeDepth = 10
|
|
}
|
|
};
|
|
|
|
var pipeline = mlContext.Transforms
|
|
.Text.FeaturizeText("SeasonF", "Season")
|
|
.Append(mlContext.Transforms.Text.FeaturizeText("CropF", "Crop"))
|
|
.Append(mlContext.Transforms.Concatenate("Features", "SeasonF", "CropF", "Rainfall"))
|
|
//.Append(mlContext.Transforms.Conversion.MapValueToKey("ProductionF", "Production"), TransformerScope.TrainTest)
|
|
//.AppendCacheCheckpoint(mLContext)
|
|
.Append(mLContext.Regression.Trainers.LightGbm(options));
|
|
//.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel", "PredictedLabel"));
|
|
|
|
//Evaluate(mlContext, trainingDataView, pipeline, 10, reportPath, "ProductionF");
|
|
//var Evaluate = mlContext.Regression.CrossValidate(trainingDataView, pipeline, numberOfFolds: 100, labelColumnName: "Production");
|
|
//var Evaluate = mlContext.Regression.Evaluate(testDataView, labelColumnName: "Production", scoreColumnName: "Score");
|
|
//var metricsInMultipleFolds = Evaluate.Select(r => r.Metrics);
|
|
|
|
ITransformer MLModel = pipeline.Fit(trainingDataView);
|
|
var testEval = MLModel.Transform(testDataView);
|
|
var Evaluate = mlContext.Regression.Evaluate(testEval, labelColumnName: "Production");
|
|
|
|
|
|
return MLModel;
|
|
}
|
|
|
|
public static ITransformer TrainModel(MLContext mlContext, IDataView trainingDataView, IEstimator<ITransformer> trainingPipeline)
|
|
{
|
|
ITransformer model = trainingPipeline.Fit(trainingDataView);
|
|
return model;
|
|
}
|
|
|
|
// Evaluate and save results to a text file
|
|
public static void Evaluate(MLContext mlContext, IDataView trainingDataView, IEstimator<ITransformer> trainingPipeline, int folds, string reportPath, string labelColumnName)
|
|
{
|
|
var crossVal = mlContext.MulticlassClassification.CrossValidate(trainingDataView, trainingPipeline, numberOfFolds: folds, labelColumnName: labelColumnName);
|
|
|
|
var metricsInMultipleFolds = crossVal.Select(r => r.Metrics);
|
|
|
|
var MicroAccuracyValues = metricsInMultipleFolds.Select(m => m.MicroAccuracy);
|
|
var LogLossValues = metricsInMultipleFolds.Select(m => m.LogLoss);
|
|
var LogLossReductionValues = metricsInMultipleFolds.Select(m => m.LogLossReduction);
|
|
string MicroAccuracyAverage = MicroAccuracyValues.Average().ToString("0.######");
|
|
string LogLossAvg = LogLossValues.Average().ToString("0.######");
|
|
string LogLossReductionAvg = LogLossReductionValues.Average().ToString("0.######");
|
|
|
|
var report = File.CreateText(reportPath);
|
|
report.Write("Micro Accuracy: " + MicroAccuracyAverage + '\n' + "LogLoss Average: " + LogLossAvg + '\n' + "LogLoss Reduction: " + LogLossReductionAvg, 0, 0);
|
|
report.Flush();
|
|
report.Close();
|
|
}
|
|
|
|
|
|
public static void SaveModel(MLContext mlContext, ITransformer Model, string modelPath, DataViewSchema modelInputSchema)
|
|
{
|
|
mlContext.Model.Save(Model, modelInputSchema, modelPath);
|
|
}
|
|
|
|
public static ITransformer LoadModel(bool isBig)
|
|
{
|
|
return mlContext.Model.Load(modelpath, out DataViewSchema inputSchema);
|
|
}
|
|
|
|
public static Microsoft.ML.PredictionEngine<Input, Output> CreateEngine()
|
|
{
|
|
ITransformer mlModel = LoadModel(false);
|
|
return mlContext.Model.CreatePredictionEngine<Input, Output>(mlModel);
|
|
}
|
|
|
|
}
|
|
}
|