forked from s452751/AI_PRO
37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
|
import os
|
||
|
import cv2
|
||
|
import matplotlib
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
path_potatoes = 'neural_network\\images\\potatoes'
|
||
|
path_beetroot = 'neural_network\\images\\beetroot'
|
||
|
size = 250
|
||
|
|
||
|
#POTATOES
|
||
|
training_data_potatoes = []
|
||
|
for img in os.listdir(path_potatoes):
|
||
|
pic = cv2.imread(os.path.join(path_potatoes,img))
|
||
|
pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB)
|
||
|
pic = cv2.resize(pic,(size,size))
|
||
|
training_data_potatoes.append([pic])
|
||
|
|
||
|
np.save(os.path.join('neural_network','potatoes-dataset'),np.array(training_data_potatoes))
|
||
|
|
||
|
saved_potatoes = np.load(os.path.join('neural_network','potatoes-dataset.npy'))
|
||
|
|
||
|
#BEETROOT
|
||
|
training_data_beetroot = []
|
||
|
for img in os.listdir(path_beetroot):
|
||
|
pic = cv2.imread(os.path.join(path_beetroot,img))
|
||
|
pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB)
|
||
|
pic = cv2.resize(pic,(size,size))
|
||
|
training_data_beetroot.append([pic])
|
||
|
|
||
|
np.save(os.path.join('neural_network','beetroot-dataset'),np.array(training_data_beetroot))
|
||
|
|
||
|
saved_potatoes = np.load(os.path.join('neural_network','beetroot-dataset.npy'))
|
||
|
|
||
|
# for i in range(5):
|
||
|
# plt.imshow(np.array(training_data_potatoes[i]).reshape(size,size,3))
|
||
|
# plt.show()
|