diff --git a/createNeuralNetworkDatabase.py b/createNeuralNetworkDatabase.py index aff7202..296cc74 100644 --- a/createNeuralNetworkDatabase.py +++ b/createNeuralNetworkDatabase.py @@ -3,37 +3,46 @@ import cv2 import matplotlib import numpy as np import matplotlib.pyplot as plt +import pandas as pd +from matplotlib.pyplot import imshow path_potatoes = 'neural_network\\images\\potatoes' path_beetroot = 'neural_network\\images\\beetroot' -size = 250 +size = 100 #POTATOES -training_data_potatoes = [] +image_data = [] +label_data = [] for img in os.listdir(path_potatoes): pic = cv2.imread(os.path.join(path_potatoes,img)) pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB) pic = cv2.resize(pic,(size,size)) - training_data_potatoes.append([pic]) + image_data.append([pic]) + label_data.append(1) +#np.save(os.path.join('neural_network','potatoes-dataset'),np.array(training_data_potatoes)) -np.save(os.path.join('neural_network','potatoes-dataset'),np.array(training_data_potatoes)) - -saved_potatoes = np.load(os.path.join('neural_network','potatoes-dataset.npy')) +#saved_potatoes = np.load(os.path.join('neural_network','potatoes-dataset.npy')) #BEETROOT -training_data_beetroot = [] for img in os.listdir(path_beetroot): pic = cv2.imread(os.path.join(path_beetroot,img)) pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB) pic = cv2.resize(pic,(size,size)) - training_data_beetroot.append([pic]) + image_data.append([pic]) + label_data.append(0) -np.save(os.path.join('neural_network','beetroot-dataset'),np.array(training_data_beetroot)) +#np.save(os.path.join('neural_network','beetroot-dataset'),np.array(training_data_beetroot)) -saved_potatoes = np.load(os.path.join('neural_network','beetroot-dataset.npy')) +#saved_potatoes = np.load(os.path.join('neural_network','beetroot-dataset.npy')) -dict = { - 'beetroots': training_data_beetroot, - 'potatoes': training_data_potatoes -} +np.save(os.path.join('neural_network','image-dataset'),np.array(image_data)) +np.save(os.path.join('neural_network','label-dataset'),np.array(label_data)) + +saved_images = np.load(os.path.join('neural_network','image-dataset.npy')) + +print(saved_images.shape) + +plt.imshow(saved_images[0].reshape(size,size,3)) +plt.imshow(np.array(image_data[0]).reshape(size,size,3)) +plt.show() \ No newline at end of file diff --git a/neuralNetwork.py b/neuralNetwork.py new file mode 100644 index 0000000..f8a4f49 --- /dev/null +++ b/neuralNetwork.py @@ -0,0 +1,54 @@ +import numpy as np +import torch +import torch.nn as nn +import torch.optim as optim +from matplotlib.pyplot import imshow +import numpy as np +from matplotlib.pyplot import imshow +import matplotlib.pyplot as ppl + +def plotdigit(image): + img = np.reshape(image, (-250, 250)) + imshow(img, cmap='Greys', vmin=0, vmax=255) + ppl.show() + +train_images = np.load('neural_network\\image-dataset.npy') +print(train_images.shape) + +train_labels = np.load('neural_network\\label-dataset.npy') + +train_images = train_images / 255 +train_labels = train_labels / 255 + +train_images = [torch.tensor(image, dtype=torch.float32) for image in train_images] +print(train_images[0].shape) + +train_labels = [torch.tensor(label, dtype=torch.long) for label in train_labels] + + +input_dim = 100*100*3 +output_dim = 2 + +model = nn.Sequential( + nn.Linear(input_dim, output_dim), + nn.LogSoftmax() +) + +def train(model, n_iter): + + criterion = nn.NLLLoss() + optimizer = optim.SGD(model.parameters(), lr=0.001) + + for epoch in range(n_iter): + for image, label in zip(train_images, train_labels): + optimizer.zero_grad() + + output = model(image) + loss = criterion(output.unsqueeze(0), label.unsqueeze(0)) + loss.backward() + optimizer.step() + + print(f'epoch: {epoch:03}') + + +train(model, 100) \ No newline at end of file diff --git a/neural_network/beetroot-dataset.npy b/neural_network/beetroot-dataset.npy deleted file mode 100644 index f6b0ee4..0000000 Binary files a/neural_network/beetroot-dataset.npy and /dev/null differ diff --git a/neural_network/potatoes-dataset.npy b/neural_network/potatoes-dataset.npy deleted file mode 100644 index 91b1284..0000000 Binary files a/neural_network/potatoes-dataset.npy and /dev/null differ