import os import cv2 import matplotlib import numpy as np import matplotlib.pyplot as plt import pandas as pd from matplotlib.pyplot import imshow path_potatoes = 'neural_network\\images\\potatoes' path_beetroot = 'neural_network\\images\\beetroot' size = 100 #POTATOES image_data = [] label_data = [] for img in os.listdir(path_potatoes): pic = cv2.imread(os.path.join(path_potatoes,img)) pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB) pic = cv2.resize(pic,(size,size)) image_data.append([pic]) label_data.append(1) #np.save(os.path.join('neural_network','potatoes-dataset'),np.array(training_data_potatoes)) #saved_potatoes = np.load(os.path.join('neural_network','potatoes-dataset.npy')) #BEETROOT for img in os.listdir(path_beetroot): pic = cv2.imread(os.path.join(path_beetroot,img)) pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB) pic = cv2.resize(pic,(size,size)) image_data.append([pic]) label_data.append(0) #np.save(os.path.join('neural_network','beetroot-dataset'),np.array(training_data_beetroot)) #saved_potatoes = np.load(os.path.join('neural_network','beetroot-dataset.npy')) np.save(os.path.join('neural_network','image-dataset'),np.array(image_data)) np.save(os.path.join('neural_network','label-dataset'),np.array(label_data)) saved_images = np.load(os.path.join('neural_network','image-dataset.npy')) print(saved_images.shape) plt.imshow(saved_images[0].reshape(size,size,3)) plt.imshow(np.array(image_data[0]).reshape(size,size,3)) plt.show()