forked from s452751/AI_PRO
222 lines
6.9 KiB
Python
222 lines
6.9 KiB
Python
from itertools import product
|
|
import numpy as np
|
|
import pandas as pd
|
|
import csv
|
|
import id3test
|
|
import pprint
|
|
import sys
|
|
import pandas
|
|
from sklearn import tree
|
|
import pydotplus
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.image as pltimg
|
|
|
|
field_states = ['toPlow', 'toWater', 'toSeed', 'toFertilize', 'toCut']
|
|
header = ['Equipped', 'Not Equipped']
|
|
hitch = ['Tillage Unit', 'Crop Trailer']
|
|
tillage_unit = ['Seeds', 'Water', 'Fertilizer', 'Nothing']
|
|
engine_working = ['Yes', 'No']
|
|
in_base = ['Yes', 'No']
|
|
fuel = ['Enough', 'Not_Enough']
|
|
|
|
# output = list(product(field_states, header, hitch, tillage_unit, engine_working, in_base, fuel))
|
|
output = list(product(field_states, header, hitch, tillage_unit, in_base))
|
|
|
|
dict = []
|
|
# for x in range(len(output)):
|
|
# # dict.append({'field': output[x][0], 'header' : output[x][1], 'hitch' : output[x][2],
|
|
# # 'tillage_unit' : output[x][3], 'engine_working' : output[x][4],
|
|
# # 'in_base' : output[x][5], 'fuel': output[x][6]})
|
|
# print(x+1, output[x])
|
|
|
|
decisions = []
|
|
curr_decision = "Make Action"
|
|
|
|
for x in range(len(output)):
|
|
aField = output[x][0]
|
|
aHeader = output[x][1]
|
|
aHitch = output[x][2]
|
|
aTillage_unit = output[x][3]
|
|
aIn_base = output[x][4]
|
|
|
|
while True:
|
|
curr_decision = "Make Action"
|
|
|
|
if aField == 'toCut':
|
|
if not aHeader == 'Equipped':
|
|
if aIn_base == 'Yes':
|
|
curr_decision = 'Change Header'
|
|
break
|
|
else:
|
|
curr_decision = 'Go To Base'
|
|
break
|
|
|
|
if not aHitch == 'Crop Trailer':
|
|
if aIn_base == 'Yes':
|
|
curr_decision = 'Change Hitch'
|
|
break
|
|
else:
|
|
curr_decision = 'Go To Base'
|
|
break
|
|
|
|
if aField == 'toPlow':
|
|
if aHeader == 'Equipped':
|
|
if aIn_base == "Yes":
|
|
curr_decision = 'Change Header'
|
|
break
|
|
else:
|
|
curr_decision = 'Go To Base'
|
|
break
|
|
|
|
if not aHitch == "Tillage Unit":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Hitch"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
if not aTillage_unit == "Nothing":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Load"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
|
|
if aField == 'toSeed':
|
|
if aHeader == 'Equipped':
|
|
if aIn_base == "Yes":
|
|
curr_decision = 'Change Header'
|
|
break
|
|
else:
|
|
curr_decision = 'Go To Base'
|
|
break
|
|
|
|
if not aHitch == "Tillage Unit":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Hitch"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
if not aTillage_unit == "Seeds":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Load"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
|
|
if aField == 'toWater':
|
|
if aHeader == 'Equipped':
|
|
if aIn_base == "Yes":
|
|
curr_decision = 'Change Header'
|
|
break
|
|
else:
|
|
curr_decision = 'Go To Base'
|
|
break
|
|
|
|
if not aHitch == "Tillage Unit":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Hitch"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
if not aTillage_unit == "Water":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Load"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
|
|
if aField == 'toFertilize':
|
|
if aHeader == 'Equipped':
|
|
if aIn_base == "Yes":
|
|
curr_decision = 'Change Header'
|
|
break
|
|
else:
|
|
curr_decision = 'Go To Base'
|
|
break
|
|
|
|
if not aHitch == "Tillage Unit":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Hitch"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
if not aTillage_unit == "Fertilizer":
|
|
if aIn_base == "Yes":
|
|
curr_decision = "Change Load"
|
|
break
|
|
else:
|
|
curr_decision = "Go To Base"
|
|
break
|
|
if aIn_base == 'Yes':
|
|
curr_decision = 'Go To Field'
|
|
break
|
|
dict.append({'Field': aField, 'Header': aHeader, 'Hitch': aHitch, 'Tillage_Unit': aTillage_unit,
|
|
'In_Base': aIn_base, 'Decision': curr_decision})
|
|
|
|
print(dict)
|
|
|
|
fields = ['Field', 'Header', 'Hitch', 'Tillage_Unit', 'In_Base', 'Decision']
|
|
|
|
filename = "treedata\\data2.csv"
|
|
|
|
with open(filename, 'w') as csvfile:
|
|
writer = csv.DictWriter(csvfile, fieldnames=fields)
|
|
writer.writeheader()
|
|
writer.writerows(dict)
|
|
|
|
df = pandas.read_csv("treedata\\data2.csv")
|
|
print(df)
|
|
|
|
# Map text values to number values
|
|
d = {'toPlow': 0, 'toWater': 1, 'toSeed': 2, 'toFertilize': 3, 'toCut': 4}
|
|
df['Field'] = df['Field'].map(d)
|
|
|
|
d = {'Not Equipped': 0, 'Equipped': 1}
|
|
df['Header'] = df['Header'].map(d)
|
|
|
|
d = {'Tillage Unit': 0, 'Crop Trailer': 1}
|
|
df['Hitch'] = df['Hitch'].map(d)
|
|
|
|
d = {'Nothing': 0, 'Seeds': 1, 'Water': 2, 'Fertilizer': 3}
|
|
df['Tillage_Unit'] = df['Tillage_Unit'].map(d)
|
|
|
|
d = {'No': 0, 'Yes': 1}
|
|
df['In_Base'] = df['In_Base'].map(d)
|
|
|
|
d = {'Make Action': 0, 'Change Header': 1, 'Go To Base': 2, 'Change Hitch': 3, 'Change Load': 4, 'Go To Field': 5}
|
|
df['Decision'] = df['Decision'].map(d)
|
|
|
|
# Separate the feature columns from targert columns
|
|
|
|
features = ['Field', 'Header', 'Hitch', 'Tillage_Unit', 'In_Base']
|
|
|
|
X = df[features]
|
|
y = df['Decision']
|
|
|
|
# FIELD 'toPlow' : 0, 'toWater' : 1, 'toSeed' : 2, 'toFertilize' : 3, 'toCut' : 4
|
|
# HEADER 'Not Equipped' : 0, 'Equipped' : 1
|
|
# HITCH 'Tillage Unit' : 0, 'Crop Trailer' : 1
|
|
# TILLAGE 'Nothing' : 0, 'Seeds' : 1, 'Water': 2, 'Fertilizer': 3
|
|
# IN BASE 'No' : 0, 'Yes' : 1
|
|
|
|
|
|
dtree = DecisionTreeClassifier()
|
|
dtree = dtree.fit(X, y)
|
|
data = tree.export_graphviz(dtree, out_file=None, feature_names=features)
|
|
graph = pydotplus.graph_from_dot_data(data)
|
|
graph.write_png('mydecisiontree.png')
|
|
|
|
img = pltimg.imread('mydecisiontree.png')
|
|
imgplot = plt.imshow(img)
|
|
plt.show()
|
|
|
|
print(dtree.predict([[0, 1, 1, 3, 0]]))
|