Projekt-Grafika-Komputerowa/dependencies/glm/gtx/matrix_query.inl
2022-01-23 19:43:27 +01:00

115 lines
3.2 KiB
C++

/// @ref gtx_matrix_query
/// @file glm/gtx/matrix_query.inl
namespace glm
{
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNull(tmat2x2<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < m.length() ; ++i)
result = isNull(m[i], epsilon);
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNull(tmat3x3<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < m.length() ; ++i)
result = isNull(m[i], epsilon);
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNull(tmat4x4<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < m.length() ; ++i)
result = isNull(m[i], epsilon);
return result;
}
template<typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER bool isIdentity(matType<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < m[0].length() ; ++i)
{
for(length_t j = 0; result && j < i ; ++j)
result = abs(m[i][j]) <= epsilon;
if(result)
result = abs(m[i][i] - 1) <= epsilon;
for(length_t j = i + 1; result && j < m.length(); ++j)
result = abs(m[i][j]) <= epsilon;
}
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNormalized(tmat2x2<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i = 0; result && i < m.length(); ++i)
result = isNormalized(m[i], epsilon);
for(length_t i = 0; result && i < m.length(); ++i)
{
typename tmat2x2<T, P>::col_type v;
for(length_t j = 0; j < m.length(); ++j)
v[j] = m[j][i];
result = isNormalized(v, epsilon);
}
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNormalized(tmat3x3<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i = 0; result && i < m.length(); ++i)
result = isNormalized(m[i], epsilon);
for(length_t i = 0; result && i < m.length(); ++i)
{
typename tmat3x3<T, P>::col_type v;
for(length_t j = 0; j < m.length(); ++j)
v[j] = m[j][i];
result = isNormalized(v, epsilon);
}
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNormalized(tmat4x4<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i = 0; result && i < m.length(); ++i)
result = isNormalized(m[i], epsilon);
for(length_t i = 0; result && i < m.length(); ++i)
{
typename tmat4x4<T, P>::col_type v;
for(length_t j = 0; j < m.length(); ++j)
v[j] = m[j][i];
result = isNormalized(v, epsilon);
}
return result;
}
template<typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER bool isOrthogonal(matType<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i(0); result && i < m.length() - 1; ++i)
for(length_t j(i + 1); result && j < m.length(); ++j)
result = areOrthogonal(m[i], m[j], epsilon);
if(result)
{
matType<T, P> tmp = transpose(m);
for(length_t i(0); result && i < m.length() - 1 ; ++i)
for(length_t j(i + 1); result && j < m.length(); ++j)
result = areOrthogonal(tmp[i], tmp[j], epsilon);
}
return result;
}
}//namespace glm