torch part 1
This commit is contained in:
parent
19a5c79255
commit
cd41e7ed4a
5272
dev-0/in.tsv
Normal file
5272
dev-0/in.tsv
Normal file
File diff suppressed because one or more lines are too long
81
main.py
81
main.py
@ -3,7 +3,38 @@ from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.naive_bayes import GaussianNB, MultinomialNB
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import torch
|
||||
from gensim import downloader
|
||||
from nltk.tokenize import word_tokenize
|
||||
|
||||
class NetworkModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
dim = 200
|
||||
super(NeuralNetworkModel, self).__init__()
|
||||
self.fc1 = torch.nn.Linear(dim, 500)
|
||||
self.fc2 = torch.nn.Linear(500, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
word2vec = downloader.load("word2vec-google-news-300")
|
||||
|
||||
def word2vecOnDoc(document):
|
||||
return numpy.mean(
|
||||
[word2vec[token] for token in document if token in word2vec] or [numpy.zeros(300)],
|
||||
axis=0,
|
||||
)
|
||||
|
||||
def prepareData(data):
|
||||
data = [word_tokenize(row) for row in data]
|
||||
print(data)
|
||||
data = [word2vecOnDoc(document) for document in data]
|
||||
return data
|
||||
|
||||
def trainModel(trainFileIn, trainFileExpected):
|
||||
with open(trainFileExpected, 'r') as f:
|
||||
@ -12,23 +43,47 @@ def trainModel(trainFileIn, trainFileExpected):
|
||||
with open(trainFileIn, 'r') as f:
|
||||
inData = f.readlines()
|
||||
|
||||
expectedDataEncoded = LabelEncoder().fit_transform(expectedData)
|
||||
expectedData = prepareData(expectedData)
|
||||
inData = prepareData(inData)
|
||||
# networkModel = NetworkModel(300, 300, 1)
|
||||
# criterion = torch.nn.BCELoss()
|
||||
# optim = torch.optim.SGD(network.parameters(), lr=0.02)
|
||||
# epochs = 1
|
||||
# batchSize = 2
|
||||
|
||||
pipeline = Pipeline(steps=[
|
||||
('tfidf', TfidfVectorizer()),
|
||||
('naive-bayes', MultinomialNB())
|
||||
])
|
||||
|
||||
return pipeline.fit(inData, expectedDataEncoded)
|
||||
# for _ in range(epochs):
|
||||
# network.train()
|
||||
# for i in range(0, inData.shape[0], batchSize):
|
||||
# x = inData[i : i + batchSize]
|
||||
# x = torch.tensor(x)
|
||||
# y = expectedData[i : i + batchSize]
|
||||
# y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||
# outputs = network(x.float())
|
||||
# loss = criterion(outputs, y)
|
||||
# print(loss)
|
||||
# optim.zero_grad()
|
||||
# loss.backward()
|
||||
# optim.step()
|
||||
# return networkModel
|
||||
|
||||
def evaluateModel(model, inFile, outFile):
|
||||
with open(inFile, 'r') as f:
|
||||
inData = f.readlines()
|
||||
prediction = model.predict(inData)
|
||||
numpy.savetxt(outFile, prediction, fmt='%d', delimiter='\n')
|
||||
with open(inFile, 'r') as f:
|
||||
inData = f.readlines()
|
||||
|
||||
inData = prepareData(inData)
|
||||
|
||||
pred = []
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(inData), batch_size):
|
||||
x = inData[i : i + batch_size]
|
||||
x = torch.tensor(x)
|
||||
outputs = model(x.float())
|
||||
prediction = outputs >= 0.5
|
||||
pred += prediction.tolist()
|
||||
numpy.asarray(pred, dtype=numpyp.int32).tofile(outFile, sep="\n")
|
||||
|
||||
model = trainModel("train/in.tsv", "train/expected.tsv")
|
||||
evaluateModel(model, "dev-0/in.tsv", "dev-0/out.tsv")
|
||||
evaluateModel(model, "test-A/in.tsv", "test-A/out.tsv")
|
||||
#evaluateModel(model, "dev-0/in.tsv", "dev-0/out.tsv")
|
||||
#evaluateModel(model, "test-A/in.tsv", "test-A/out.tsv")
|
||||
|
||||
|
||||
|
5152
test-A/in.tsv
Normal file
5152
test-A/in.tsv
Normal file
File diff suppressed because one or more lines are too long
289579
train/in.tsv
Normal file
289579
train/in.tsv
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user