szu
This commit is contained in:
parent
a9defbbc5a
commit
f688e6e966
@ -21,12 +21,10 @@ dict_column_23 = {"":9, "beton":1, "beton komórkowy":2, "cegła":3, "inne":4, "
|
|||||||
|
|
||||||
def read_data(in_file):
|
def read_data(in_file):
|
||||||
print("Reading in")
|
print("Reading in")
|
||||||
all_data = pd.read_csv(in_file, sep='\t', keep_default_na=False, header = 1)
|
all_data = pd.read_csv(in_file, sep='\t', keep_default_na=False, header = 0)
|
||||||
expected = all_data.iloc[:,0]
|
|
||||||
data = all_data.iloc[:,1:]
|
|
||||||
|
|
||||||
print("Data read")
|
print("Data read")
|
||||||
return expected, data
|
return all_data
|
||||||
|
|
||||||
def clean_df(data_):
|
def clean_df(data_):
|
||||||
print("Cleaning data")
|
print("Cleaning data")
|
||||||
@ -43,6 +41,7 @@ def clean_df(data_):
|
|||||||
if col == 'parter':
|
if col == 'parter':
|
||||||
data_.iloc[i,14] = 22
|
data_.iloc[i,14] = 22
|
||||||
|
|
||||||
|
|
||||||
# clear money
|
# clear money
|
||||||
for i, col in enumerate(data_.iloc[:,1]):
|
for i, col in enumerate(data_.iloc[:,1]):
|
||||||
try:
|
try:
|
||||||
@ -50,9 +49,10 @@ def clean_df(data_):
|
|||||||
data_.iloc[i,1] = 1.0
|
data_.iloc[i,1] = 1.0
|
||||||
else:
|
else:
|
||||||
data_.iloc[i,1] = float(col.replace("zł", "").replace(" ", ""))
|
data_.iloc[i,1] = float(col.replace("zł", "").replace(" ", ""))
|
||||||
except ValueError:
|
except AttributeError:
|
||||||
import ipdb; ipdb.set_trace()
|
import ipdb; ipdb.set_trace()
|
||||||
|
|
||||||
|
|
||||||
# deleting columns
|
# deleting columns
|
||||||
deleted_columns = [4,13,18,20,22,24]
|
deleted_columns = [4,13,18,20,22,24]
|
||||||
data_.drop(data_.columns[deleted_columns], axis = 1, inplace=True)
|
data_.drop(data_.columns[deleted_columns], axis = 1, inplace=True)
|
||||||
@ -71,20 +71,11 @@ def clean_df(data_):
|
|||||||
data_.iloc[i,4] = 1
|
data_.iloc[i,4] = 1
|
||||||
|
|
||||||
for i, col in enumerate(data_.iloc[:,6]):
|
for i, col in enumerate(data_.iloc[:,6]):
|
||||||
data_.iloc[i,6] = col.replace(' ', '')
|
|
||||||
print("Data cleaned")
|
|
||||||
return data_
|
|
||||||
|
|
||||||
def clear(data_):
|
|
||||||
for i, col in enumerate(data_.iloc[:,2]):
|
|
||||||
try:
|
try:
|
||||||
if col == "":
|
data_.iloc[i,6] = col.replace(' ', '')
|
||||||
data_.iloc[i,2] = 1.0
|
|
||||||
else:
|
|
||||||
data_.iloc[i,2] = float(col.replace("zł", "").replace(" ", ""))
|
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
data_.iloc[i,2] = float(data_.iloc[i,2])
|
pass
|
||||||
#import ipdb; ipdb.set_trace()
|
print("Data cleaned")
|
||||||
return data_
|
return data_
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -94,9 +85,8 @@ def main():
|
|||||||
parser.add_argument("--out")
|
parser.add_argument("--out")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
expected, data = read_data(args.in_file)
|
data = read_data(args.in_file)
|
||||||
clean_data = clear(data)
|
clean_data = clean_df(data)
|
||||||
clean_data = clean_data.iloc[:,2]
|
|
||||||
|
|
||||||
import ipdb; ipdb.set_trace()
|
import ipdb; ipdb.set_trace()
|
||||||
#model = Network(len(clean_data.columns))
|
#model = Network(len(clean_data.columns))
|
||||||
@ -105,8 +95,15 @@ def main():
|
|||||||
print(f"Loading model : {args.checkpoint}")
|
print(f"Loading model : {args.checkpoint}")
|
||||||
model.load_state_dict(torch.load(args.checkpoint))
|
model.load_state_dict(torch.load(args.checkpoint))
|
||||||
with open(args.out, 'w+') as f:
|
with open(args.out, 'w+') as f:
|
||||||
for i in clean_data:
|
for i in range(len(clean_data.index)):
|
||||||
tensor = torch.tensor([i])
|
data_arr = clean_data.loc[i].to_numpy()
|
||||||
|
data_arr[data_arr == ""] = 0
|
||||||
|
try:
|
||||||
|
data_arr = pd.to_numeric(data_arr)
|
||||||
|
except ValueError:
|
||||||
|
ipdb.set_trace()
|
||||||
|
data_arr = np.sum(data_arr)
|
||||||
|
tensor = torch.tensor([data_arr])
|
||||||
y = model(tensor.float())
|
y = model(tensor.float())
|
||||||
try:
|
try:
|
||||||
f.write(str(y.item()) + '\n')
|
f.write(str(y.item()) + '\n')
|
||||||
|
28
src/train.py
28
src/train.py
@ -21,7 +21,7 @@ dict_column_23 = {"":9, "beton":1, "beton komórkowy":2, "cegła":3, "inne":4, "
|
|||||||
|
|
||||||
def read_data(in_file):
|
def read_data(in_file):
|
||||||
print("Reading in")
|
print("Reading in")
|
||||||
all_data = pd.read_csv(in_file, sep='\t', keep_default_na=False, header = 1)
|
all_data = pd.read_csv(in_file, sep='\t', keep_default_na=False, header = 0)
|
||||||
expected = all_data.iloc[:,0]
|
expected = all_data.iloc[:,0]
|
||||||
data = all_data.iloc[:,1:]
|
data = all_data.iloc[:,1:]
|
||||||
|
|
||||||
@ -83,7 +83,7 @@ def main():
|
|||||||
|
|
||||||
expected, data = read_data(args.in_file)
|
expected, data = read_data(args.in_file)
|
||||||
clean_data = clean_df(data)
|
clean_data = clean_df(data)
|
||||||
clean_data = clean_data.iloc[:,1]
|
#clean_data = clean_data.iloc[:,6]
|
||||||
|
|
||||||
import ipdb; ipdb.set_trace()
|
import ipdb; ipdb.set_trace()
|
||||||
#model = Network(len(clean_data.columns))
|
#model = Network(len(clean_data.columns))
|
||||||
@ -91,7 +91,7 @@ def main():
|
|||||||
if args.checkpoint:
|
if args.checkpoint:
|
||||||
print(f"Loading model : {args.checkpoint}")
|
print(f"Loading model : {args.checkpoint}")
|
||||||
model.load_state_dict(torch.load(args.checkpoint))
|
model.load_state_dict(torch.load(args.checkpoint))
|
||||||
lr = 10
|
lr = 0.1
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
||||||
criterion = torch.nn.MSELoss()
|
criterion = torch.nn.MSELoss()
|
||||||
|
|
||||||
@ -102,21 +102,23 @@ def main():
|
|||||||
counter = 0
|
counter = 0
|
||||||
l = [i for i in range(len(clean_data.index))]
|
l = [i for i in range(len(clean_data.index))]
|
||||||
#import ipdb; ipdb.set_trace()
|
#import ipdb; ipdb.set_trace()
|
||||||
for j in range(100):
|
for j in range(500):
|
||||||
random.shuffle(l)
|
random.shuffle(l)
|
||||||
for i in l:
|
for i in l:
|
||||||
data_arr = [clean_data[i]]
|
#data_arr = [float(clean_data[i])]
|
||||||
#data_arr = clean_data.loc[i].to_numpy()
|
data_arr = clean_data.loc[i].to_numpy()
|
||||||
#data_arr[data_arr == ""] = 0
|
data_arr[data_arr == ""] = 0
|
||||||
#try:
|
try:
|
||||||
# data_arr = pd.to_numeric(data_arr)
|
data_arr = pd.to_numeric(data_arr)
|
||||||
#except ValueError:
|
except ValueError:
|
||||||
# import ipdb; ipdb.set_trace()
|
import ipdb; ipdb.set_trace()
|
||||||
#import ipdb; ipdb.set_trace()
|
#import ipdb; ipdb.set_trace()
|
||||||
|
data_arr = np.sum(data_arr)
|
||||||
|
#$import ipdb; ipdb.set_trace()
|
||||||
expected_arr = float(expected.loc[i])
|
expected_arr = float(expected.loc[i])
|
||||||
|
|
||||||
#tensor = torch.from_numpy(data_arr)
|
#tensor = torch.from_numpy(data_arr)
|
||||||
tensor = torch.tensor(data_arr)
|
tensor = torch.tensor([data_arr])
|
||||||
y = torch.tensor([expected_arr])
|
y = torch.tensor([expected_arr])
|
||||||
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
@ -134,7 +136,7 @@ def main():
|
|||||||
counter += 1
|
counter += 1
|
||||||
|
|
||||||
print(f"Saving last model model-final-{lr}-{random_number}")
|
print(f"Saving last model model-final-{lr}-{random_number}")
|
||||||
torch.save(model.state_dict(), f"model-{counter}-{lr}-{random_number}.ckpt")
|
torch.save(model.state_dict(), f"model-{counter}-{lr}-{random_number}-final.ckpt")
|
||||||
|
|
||||||
|
|
||||||
main()
|
main()
|
||||||
|
834
test-A/out.tsv
834
test-A/out.tsv
@ -1,416 +1,418 @@
|
|||||||
-495323.9375
|
328260.59375
|
||||||
-950439.375
|
290434.46875
|
||||||
-643593.0
|
292780.09375
|
||||||
-499419.0
|
452705.0
|
||||||
-515375.5625
|
339881.5625
|
||||||
-348890.5625
|
294927.78125
|
||||||
-377979.5625
|
318433.34375
|
||||||
-594170.0
|
247435.4375
|
||||||
-580049.125
|
256481.875
|
||||||
-424013.5625
|
323397.09375
|
||||||
-586827.125
|
319579.84375
|
||||||
-507609.0625
|
290749.3125
|
||||||
-588945.25
|
342362.5625
|
||||||
-690333.125
|
313328.3125
|
||||||
-865996.625
|
321604.28125
|
||||||
-130440.78125
|
377242.15625
|
||||||
-850746.125
|
447839.75
|
||||||
-943237.75
|
175605.453125
|
||||||
-456915.1875
|
416553.0
|
||||||
-761078.625
|
434855.46875
|
||||||
-813043.375
|
311214.34375
|
||||||
-839873.0
|
376477.53125
|
||||||
-755006.625
|
393614.1875
|
||||||
-615351.3125
|
414439.03125
|
||||||
-904405.375
|
376927.3125
|
||||||
-652771.5625
|
330591.34375
|
||||||
-1003675.125
|
423059.09375
|
||||||
-523848.0625
|
342557.3125
|
||||||
-224203.3125
|
452864.25
|
||||||
-415682.25
|
301894.875
|
||||||
-99657.3125
|
207854.734375
|
||||||
-1266040.75
|
279639.75
|
||||||
-682707.875
|
169623.359375
|
||||||
-614927.6875
|
545860.0
|
||||||
-457480.0
|
351379.78125
|
||||||
-509162.375
|
331166.625
|
||||||
-740179.75
|
288680.34375
|
||||||
-604619.4375
|
325787.25
|
||||||
-569034.875
|
369730.8125
|
||||||
-503514.0625
|
327621.4375
|
||||||
-861054.375
|
316553.25
|
||||||
-427120.1875
|
296276.6875
|
||||||
-844391.75
|
429754.0625
|
||||||
-474142.625
|
294572.46875
|
||||||
-320225.1875
|
402384.90625
|
||||||
-553219.5
|
286140.875
|
||||||
-755147.875
|
267815.0
|
||||||
-430085.5625
|
309493.03125
|
||||||
-615351.3125
|
374080.21875
|
||||||
-1034034.875
|
273927.53125
|
||||||
-1147849.125
|
330916.09375
|
||||||
-424296.0
|
473756.125
|
||||||
-550677.75
|
518154.0
|
||||||
-658419.9375
|
304233.75
|
||||||
-615351.3125
|
329205.59375
|
||||||
-1064536.0
|
344319.125
|
||||||
-510856.875
|
331068.125
|
||||||
-704454.0
|
472727.9375
|
||||||
-184100.0625
|
296890.625
|
||||||
-656019.375
|
358333.375
|
||||||
-690333.125
|
194842.5625
|
||||||
-804429.625
|
357496.78125
|
||||||
-581320.0
|
354438.28125
|
||||||
-882094.375
|
392084.9375
|
||||||
-572847.5
|
343979.53125
|
||||||
-594170.0
|
415878.34375
|
||||||
-671269.9375
|
348865.5
|
||||||
-754441.75
|
324410.0
|
||||||
-561409.5625
|
347691.5625
|
||||||
-480920.6875
|
378960.34375
|
||||||
-530626.125
|
321109.53125
|
||||||
-474142.625
|
288545.40625
|
||||||
-909206.5
|
334535.46875
|
||||||
-709113.875
|
286560.0625
|
||||||
-697393.5
|
437049.53125
|
||||||
-650653.4375
|
385360.71875
|
||||||
-615351.3125
|
356336.375
|
||||||
-640062.8125
|
341169.75
|
||||||
-644581.5
|
330366.46875
|
||||||
-631307.875
|
338291.15625
|
||||||
-603489.75
|
341802.15625
|
||||||
-491934.9375
|
336891.0
|
||||||
-730153.875
|
354904.71875
|
||||||
-923892.25
|
292480.96875
|
||||||
-629472.125
|
365907.6875
|
||||||
-175627.5625
|
448952.0625
|
||||||
-629330.9375
|
334696.5
|
||||||
-589368.875
|
205673.296875
|
||||||
-615351.3125
|
352486.25
|
||||||
-601230.4375
|
337121.71875
|
||||||
-506620.625
|
330743.375
|
||||||
-388852.625
|
324751.40625
|
||||||
-498148.125
|
315910.0625
|
||||||
-239877.5
|
257960.3125
|
||||||
-591204.625
|
293178.125
|
||||||
-286758.75
|
237045.5
|
||||||
-683131.5
|
324865.1875
|
||||||
-558867.8125
|
225967.40625
|
||||||
-556749.6875
|
352553.71875
|
||||||
-615351.3125
|
312955.0
|
||||||
-465952.5625
|
336716.90625
|
||||||
-392806.4375
|
330464.96875
|
||||||
-524836.5625
|
283372.90625
|
||||||
-653054.0
|
281213.96875
|
||||||
-366541.625
|
323102.03125
|
||||||
-756560.0
|
343063.34375
|
||||||
-715750.625
|
280764.1875
|
||||||
-510292.0625
|
376876.9375
|
||||||
-332934.0
|
364843.96875
|
||||||
-530626.125
|
297226.15625
|
||||||
-708831.375
|
257735.421875
|
||||||
-1035447.0
|
304042.59375
|
||||||
-583720.5625
|
359707.46875
|
||||||
-982635.0
|
482760.71875
|
||||||
-502384.375
|
322166.5
|
||||||
-604478.25
|
460096.25
|
||||||
-502384.375
|
295476.0625
|
||||||
-600524.375
|
345905.9375
|
||||||
-1014548.125
|
294572.46875
|
||||||
-631307.875
|
340940.34375
|
||||||
-792003.25
|
457986.8125
|
||||||
-700076.5
|
352838.84375
|
||||||
-550395.3125
|
386454.09375
|
||||||
-756560.0
|
356980.4375
|
||||||
-1338480.75
|
310644.90625
|
||||||
-580049.125
|
384384.6875
|
||||||
-523565.6875
|
560150.0
|
||||||
-427120.1875
|
319088.65625
|
||||||
-1105768.875
|
301582.75
|
||||||
-476119.5625
|
271183.875
|
||||||
-611679.875
|
509396.75
|
||||||
-637097.4375
|
286544.78125
|
||||||
-474566.25
|
328620.875
|
||||||
-897768.625
|
336402.0625
|
||||||
-486427.8125
|
286130.0625
|
||||||
-474142.625
|
419490.0625
|
||||||
-876022.5
|
288995.1875
|
||||||
-953687.25
|
305996.90625
|
||||||
-517352.5
|
413809.34375
|
||||||
-752606.125
|
478307.90625
|
||||||
-465670.125
|
300194.28125
|
||||||
-460163.0
|
373154.5625
|
||||||
-649382.5625
|
312734.59375
|
||||||
-843262.0
|
303855.9375
|
||||||
-418788.875
|
343868.4375
|
||||||
-397183.9375
|
403194.53125
|
||||||
-743145.125
|
267333.75
|
||||||
-522577.1875
|
263762.5
|
||||||
-784660.5
|
371305.0625
|
||||||
-700782.5
|
318693.75
|
||||||
-710384.75
|
383351.09375
|
||||||
-425708.0625
|
374903.3125
|
||||||
-676353.375
|
359748.40625
|
||||||
-468070.6875
|
301049.3125
|
||||||
-770680.75
|
349895.5
|
||||||
-742439.125
|
306356.71875
|
||||||
-545029.375
|
383538.65625
|
||||||
-608573.25
|
374082.03125
|
||||||
-383486.6875
|
307865.28125
|
||||||
-657713.875
|
330361.53125
|
||||||
-950721.875
|
257915.328125
|
||||||
-728318.25
|
344678.03125
|
||||||
-421895.4375
|
454784.375
|
||||||
-683837.5
|
366526.125
|
||||||
-580049.125
|
270568.5625
|
||||||
-597417.8125
|
350796.40625
|
||||||
-479508.5625
|
320226.625
|
||||||
-537827.75
|
342384.15625
|
||||||
-596146.9375
|
287331.0
|
||||||
-498289.3125
|
306716.09375
|
||||||
-580190.3125
|
335129.1875
|
||||||
-709537.5
|
324631.3125
|
||||||
-687932.5
|
319871.28125
|
||||||
-488969.5625
|
377107.21875
|
||||||
-615351.3125
|
353235.125
|
||||||
-991672.375
|
319987.78125
|
||||||
-976704.25
|
331454.46875
|
||||||
-693016.0
|
450475.46875
|
||||||
-607867.25
|
477543.28125
|
||||||
-493629.4375
|
369924.6875
|
||||||
-523706.875
|
341529.5625
|
||||||
-500125.0625
|
306176.8125
|
||||||
-675929.75
|
331454.46875
|
||||||
-645569.9375
|
308119.875
|
||||||
-493488.25
|
348750.34375
|
||||||
-1139800.25
|
340099.28125
|
||||||
-530061.25
|
292077.53125
|
||||||
-488122.3125
|
501291.6875
|
||||||
-526107.4375
|
308650.59375
|
||||||
-608290.875
|
315550.21875
|
||||||
-597700.1875
|
303163.28125
|
||||||
-547853.5625
|
328932.5625
|
||||||
-828858.75
|
325427.40625
|
||||||
-389135.0625
|
331589.40625
|
||||||
-546865.125
|
408048.53125
|
||||||
-756560.0
|
259449.078125
|
||||||
-707136.875
|
323763.21875
|
||||||
-427967.4375
|
386327.75
|
||||||
-728318.25
|
359210.46875
|
||||||
-701488.625
|
270958.96875
|
||||||
-584426.625
|
370279.5625
|
||||||
-489675.5625
|
385158.3125
|
||||||
-870797.75
|
336441.65625
|
||||||
-389417.4375
|
311407.75
|
||||||
-799063.75
|
414214.15625
|
||||||
-298620.3125
|
259488.21875
|
||||||
-537262.9375
|
388089.09375
|
||||||
-544746.9375
|
242570.15625
|
||||||
-474142.625
|
320508.625
|
||||||
-750770.375
|
317673.21875
|
||||||
-1625416.75
|
285978.5
|
||||||
-454514.625
|
391455.25
|
||||||
-647123.25
|
652008.75
|
||||||
-219967.0625
|
304260.71875
|
||||||
-237476.9375
|
339820.40625
|
||||||
-798922.5
|
206505.390625
|
||||||
-728318.25
|
211452.96875
|
||||||
-210364.875
|
387616.8125
|
||||||
-549124.4375
|
365439.9375
|
||||||
-756560.0
|
206685.296875
|
||||||
-766585.75
|
310269.8125
|
||||||
-707136.875
|
375180.8125
|
||||||
-1355990.625
|
390420.75
|
||||||
-527801.9375
|
359662.46875
|
||||||
-768845.125
|
588864.0
|
||||||
-356515.8125
|
301818.4375
|
||||||
-718010.0
|
380269.625
|
||||||
-798216.5
|
250763.8125
|
||||||
-635544.125
|
378231.6875
|
||||||
-613939.1875
|
403734.25
|
||||||
-692592.375
|
352998.96875
|
||||||
-937165.75
|
330484.3125
|
||||||
-493488.25
|
377129.71875
|
||||||
-645993.5625
|
450556.4375
|
||||||
-460021.75
|
292212.4375
|
||||||
-182546.8125
|
341207.96875
|
||||||
-837190.125
|
282172.46875
|
||||||
-654042.4375
|
213297.078125
|
||||||
-527378.3125
|
400990.59375
|
||||||
-383486.6875
|
365642.3125
|
||||||
-488545.9375
|
302893.40625
|
||||||
-582449.6875
|
258994.796875
|
||||||
-365976.8125
|
311934.0
|
||||||
-692451.25
|
320033.1875
|
||||||
-1745020.5
|
262008.328125
|
||||||
-589368.875
|
374871.8125
|
||||||
-615351.3125
|
709585.1875
|
||||||
-523706.875
|
322099.03125
|
||||||
-328697.75
|
331011.90625
|
||||||
-856818.125
|
303671.53125
|
||||||
-502666.8125
|
259116.25
|
||||||
-651359.5
|
417767.40625
|
||||||
-483744.8125
|
294442.46875
|
||||||
-1116077.125
|
361059.0625
|
||||||
-824340.125
|
289220.0625
|
||||||
-369365.8125
|
491450.5
|
||||||
-724223.125
|
398354.90625
|
||||||
-791862.125
|
263937.0
|
||||||
-769974.75
|
365631.09375
|
||||||
-841285.125
|
385387.6875
|
||||||
-654183.6875
|
379055.6875
|
||||||
-498571.75
|
402700.1875
|
||||||
-495182.75
|
343847.28125
|
||||||
-841285.125
|
312941.5
|
||||||
-498854.125
|
16417158.0
|
||||||
-427826.1875
|
401973.34375
|
||||||
-927563.625
|
293798.84375
|
||||||
-580049.125
|
283552.84375
|
||||||
-701771.0
|
432250.34375
|
||||||
-629472.125
|
319760.1875
|
||||||
-427543.8125
|
358756.1875
|
||||||
-500689.875
|
334504.875
|
||||||
-448442.6875
|
304647.5625
|
||||||
-746816.5
|
294888.65625
|
||||||
-758960.5
|
279347.375
|
||||||
-646558.375
|
372384.53125
|
||||||
-507185.4375
|
375613.9375
|
||||||
-950721.875
|
340661.5
|
||||||
-558867.8125
|
319805.15625
|
||||||
-820527.5
|
436748.15625
|
||||||
-394924.5625
|
313418.28125
|
||||||
-516505.25
|
422580.0625
|
||||||
-798922.5
|
262098.28125
|
||||||
-768562.625
|
298942.96875
|
||||||
-603348.5625
|
387841.71875
|
||||||
-364423.5
|
379760.9375
|
||||||
-656584.1875
|
327046.625
|
||||||
-678612.75
|
251523.9375
|
||||||
-609702.9375
|
344947.90625
|
||||||
-572847.5
|
374048.71875
|
||||||
-463693.1875
|
328937.5
|
||||||
-401279.0
|
315614.09375
|
||||||
-475837.125
|
281888.21875
|
||||||
-645146.3125
|
280888.3125
|
||||||
-404385.5625
|
288109.09375
|
||||||
-663644.625
|
339343.625
|
||||||
-682990.25
|
265021.875
|
||||||
-714197.375
|
362174.5
|
||||||
-473295.375
|
373733.875
|
||||||
-500407.4375
|
361927.125
|
||||||
-1003675.125
|
307769.03125
|
||||||
-815867.625
|
307004.40625
|
||||||
-785931.375
|
453070.71875
|
||||||
-923751.0
|
413141.875
|
||||||
-781412.625
|
391198.84375
|
||||||
-868256.0
|
442505.34375
|
||||||
-756560.0
|
385788.0
|
||||||
-646982.0
|
411106.1875
|
||||||
-554631.5625
|
375663.4375
|
||||||
-931799.875
|
358126.46875
|
||||||
-441523.4375
|
312175.0625
|
||||||
-615351.3125
|
431710.625
|
||||||
-580049.125
|
276041.5
|
||||||
-458327.25
|
330350.71875
|
||||||
-1180185.875
|
320290.90625
|
||||||
-286617.5625
|
281139.3125
|
||||||
-580049.125
|
513075.96875
|
||||||
-6459.59375
|
227483.15625
|
||||||
-755147.875
|
318900.1875
|
||||||
-601230.4375
|
137194.171875
|
||||||
-672964.4375
|
374488.15625
|
||||||
-540651.9375
|
325707.625
|
||||||
-728318.25
|
349265.8125
|
||||||
-678895.125
|
322998.59375
|
||||||
-1358673.625
|
366007.09375
|
||||||
-364564.75
|
349900.0
|
||||||
-421613.0
|
566824.75
|
||||||
-1029657.5
|
252248.09375
|
||||||
-672540.8125
|
270432.71875
|
||||||
-577224.9375
|
465381.1875
|
||||||
-378685.625
|
370607.90625
|
||||||
-684402.375
|
317736.15625
|
||||||
-577931.0
|
256179.171875
|
||||||
-833236.25
|
354525.09375
|
||||||
-697675.875
|
320007.5625
|
||||||
-601230.4375
|
399551.28125
|
||||||
-656725.4375
|
371179.125
|
||||||
-911889.5
|
325746.78125
|
||||||
-685955.625
|
365570.34375
|
||||||
-492358.5625
|
424458.78125
|
||||||
-717021.5
|
353677.6875
|
||||||
-562680.4375
|
303248.28125
|
||||||
-544746.9375
|
363015.59375
|
||||||
-289865.375
|
314392.5
|
||||||
-498854.125
|
309851.53125
|
||||||
-493488.25
|
229255.28125
|
||||||
-661385.3125
|
293753.84375
|
||||||
-1250790.25
|
292392.375
|
||||||
-628766.125
|
345505.1875
|
||||||
-424296.0
|
535908.1875
|
||||||
-784801.625
|
334153.15625
|
||||||
-403538.3125
|
304233.75
|
||||||
-1102521.125
|
401305.4375
|
||||||
-467082.1875
|
264437.15625
|
||||||
-302291.6875
|
484245.0
|
||||||
-722669.875
|
299754.84375
|
||||||
-567199.125
|
250828.578125
|
||||||
-473154.1875
|
364333.46875
|
||||||
-551807.375
|
327136.59375
|
||||||
-615351.3125
|
289534.90625
|
||||||
-558867.8125
|
309634.28125
|
||||||
-516505.25
|
329670.65625
|
||||||
-678612.75
|
312779.125
|
||||||
-510856.875
|
299207.0
|
||||||
-613656.8125
|
373643.90625
|
||||||
-243972.5625
|
297068.3125
|
||||||
-332934.0
|
357919.59375
|
||||||
-587109.5625
|
215006.234375
|
||||||
-800758.25
|
240958.59375
|
||||||
-251597.8125
|
322157.5
|
||||||
-735519.875
|
407107.59375
|
||||||
-963289.375
|
219079.0
|
||||||
-700076.5
|
368633.375
|
||||||
-788755.5
|
450425.96875
|
||||||
-428955.875
|
357406.40625
|
||||||
-734672.625
|
405623.34375
|
||||||
-589933.75
|
271993.46875
|
||||||
-502384.375
|
368542.0625
|
||||||
-930529.0
|
341306.9375
|
||||||
-792144.5
|
294221.1875
|
||||||
-481909.125
|
434104.8125
|
||||||
-1391998.875
|
386309.71875
|
||||||
-565928.25
|
290960.71875
|
||||||
-401843.8125
|
578506.9375
|
||||||
-445900.9375
|
314542.28125
|
||||||
-561692.0
|
264093.96875
|
||||||
-594170.0
|
276502.53125
|
||||||
-594170.0
|
312560.09375
|
||||||
-608290.875
|
324631.3125
|
||||||
-551525.0
|
324586.3125
|
||||||
-608290.875
|
330631.40625
|
||||||
-580049.125
|
311647.9375
|
||||||
-629472.125
|
327977.6875
|
||||||
-544746.9375
|
319125.09375
|
||||||
-563527.6875
|
335225.90625
|
||||||
-332086.75
|
308579.09375
|
||||||
-629472.125
|
314317.84375
|
||||||
-940131.125
|
240164.265625
|
||||||
-629472.125
|
334759.9375
|
||||||
-601230.4375
|
433824.59375
|
||||||
-587109.5625
|
335073.40625
|
||||||
-587109.5625
|
327641.6875
|
||||||
-161365.5
|
321804.0
|
||||||
-636532.5625
|
321961.40625
|
||||||
-728318.25
|
187614.59375
|
||||||
-724929.25
|
336919.3125
|
||||||
-388005.375
|
367617.75
|
||||||
-615351.3125
|
369609.375
|
||||||
-629472.125
|
258921.9375
|
||||||
-516646.4375
|
330701.09375
|
||||||
-664774.3125
|
334808.0625
|
||||||
-636532.5625
|
298486.90625
|
||||||
-544605.75
|
345846.5625
|
||||||
-961453.75
|
336715.59375
|
||||||
-943237.75
|
307528.84375
|
||||||
-544746.9375
|
441907.59375
|
||||||
|
436236.75
|
||||||
|
308643.40625
|
||||||
|
|
Loading…
Reference in New Issue
Block a user