paranormal-or-skeptic/train.py

154 lines
6.7 KiB
Python
Raw Normal View History

2020-03-22 10:15:36 +01:00
#!/usr/bin/python3
from collections import defaultdict
import math
import pickle
2020-03-22 11:59:07 +01:00
import re
2020-03-29 13:39:47 +02:00
import sys
2020-03-29 23:29:19 +02:00
import nltk
from nltk.corpus import stopwords
2020-03-22 10:15:36 +01:00
def calc_class_logprob(expected_path):
2020-03-29 13:39:47 +02:00
paranormal_classcount = 0
sceptic_classcount = 0
2020-03-22 10:15:36 +01:00
with open(expected_path) as f:
for line in f:
2020-03-22 12:14:52 +01:00
line = line.rstrip('\n').replace(' ','')
2020-03-22 10:15:36 +01:00
if 'P' in line:
2020-03-29 13:39:47 +02:00
paranormal_classcount +=1
2020-03-22 10:15:36 +01:00
elif 'S' in line:
sceptic_classcount +=1
2020-03-29 13:39:47 +02:00
paranol_prob = paranormal_classcount / (paranormal_classcount + sceptic_classcount)
sceptic_prob = sceptic_classcount / (paranormal_classcount + sceptic_classcount)
2020-03-22 10:15:36 +01:00
return math.log(paranol_prob), math.log(sceptic_prob)
2020-03-29 13:39:47 +02:00
def clear_post(post):
post = post.replace('\\n', ' ')
2020-03-29 23:29:19 +02:00
post = post.lower()
2020-03-29 13:39:47 +02:00
# delete links
2020-03-29 19:48:30 +02:00
post = re.sub(r'(\(|)(http|https|www)[a-zA-Z0-9\.\:\/\_\=\&\;\?\+\-\%]+(\)|)', ' internetlink ', post)
2020-03-29 14:28:07 +02:00
post = re.sub(r'[\.\,\/\~]+', ' ', post)
post = re.sub(r'(&lt|&gt|\@[a-zA-Z0-9]+)','',post)
2020-03-29 19:48:30 +02:00
post = re.sub(r'[\'\(\)\?\*\"\`\;0-9\[\]\:\%\|\\\!\=\^]+', '', post)
2020-03-29 14:28:07 +02:00
post = re.sub(r'( \- |\-\-+)', ' ', post)
2020-03-29 13:39:47 +02:00
post = re.sub(r' +', ' ', post)
post = post.rstrip(' ')
2020-03-29 23:29:19 +02:00
post = post.split(' ')
stop_words = set(stopwords.words('english'))
post_no_stop = [w for w in post if not w in stop_words]
return post_no_stop
2020-03-22 10:15:36 +01:00
2020-03-29 23:29:19 +02:00
#def calc_bigram_count(in_path, expected_path):
# bigram_counts = {'paranormal' : defaultdict(int), 'sceptic' : defaultdict(int)}
# with open(in_path) as infile, open(expected_path) as expected_file:
# num_of_bigams = 0
# for line, exp in zip(infile, expected_file):
# class_ = exp.rstrip('\n').replace(' ', '')
# text, timestap = line.rstrip('\n').split('\t')
# tokens = clear_post(text)
# #tokens = text.lower().split(' ')
# for index in range(len(tokens)-1):
# # if there is next token we append current and next
# bigram = tokens[index] + " " + tokens[index + 1]
# #print(bigram)
# #print (f"bigram constructed from ;;;;{tokens[index]}:{tokens[index+1]};;;;;;;")
# if class_ == 'P':
# bigram_counts['paranormal'][bigram] +=1
# elif class_ == 'S':
# bigram_counts['sceptic'][bigram] +=1
# num_of_bigams +=1
# #print(f"num of every added bigams with repetitions {num_of_bigams})")
# #print(f"num of bigams in paranormal {len(bigram_counts['paranormal'])} and sceptic {len(bigram_counts['sceptic'])}")
# return bigram_counts
2020-03-22 10:15:36 +01:00
2020-03-29 13:39:47 +02:00
def calc_bigram_logprobs(bigram_counts):
total_sceptic = sum(bigram_counts['sceptic'].values()) + len(bigram_counts['sceptic'].keys())
total_paranormal = sum(bigram_counts['paranormal'].values()) + len(bigram_counts['paranormal'].keys())
bigram_logprobs = {'paranormal' : {}, 'sceptic' : {}}
for class_ in bigram_counts.keys():
for bigram, value in bigram_counts[class_].items():
if class_ == "sceptic":
bigram_prob = (value + 1) / total_sceptic
elif class_ == "paranormal":
bigram_prob = (value + 1) / total_paranormal
2020-03-22 10:15:36 +01:00
2020-03-29 13:39:47 +02:00
bigram_logprobs[class_][bigram] = math.log(bigram_prob)
2020-03-22 10:15:36 +01:00
2020-03-29 13:39:47 +02:00
return bigram_logprobs
2020-03-22 10:15:36 +01:00
2020-03-29 23:29:19 +02:00
#def calc_word_count(in_path, expected_path):
# word_counts = {'paranormal':defaultdict(int), 'sceptic': defaultdict(int)} # dzienik zawierajacy slownik w ktorym s slowa i ile razy wystepuja
# with open(in_path) as infile, open(expected_path) as expectedfile:
# for line, exp in zip(infile, expectedfile):
# class_ = exp.rstrip('\n').replace(' ','')
# text, timestap =line.rstrip('\n').split('\t')
# #print(f"text {type(text)}")
# text = clear_tokens(text, True)
# tokens = text.lower().split(' ')
# #print(f"tokens {type(tokens)}")
# for token in tokens:
# clear_tokens(token,False)
# if class_ == 'P':
# word_counts['paranormal'][token] += 1
# elif class_ == 'S':
# word_counts['sceptic'][token]+=1
#
# return word_counts
def calc_word_logprobs(word_counts):
total_skeptic = sum(word_counts['sceptic'].values()) + len(word_counts['sceptic'].keys())
total_paranormal = sum(word_counts['paranormal'].values())+ len(word_counts['paranormal'].keys())
word_logprobs= {'paranormal': {}, 'sceptic': {}}
for class_ in word_counts.keys(): # sceptic paranormal
for token, value in word_counts[class_].items():
if class_ == 'sceptic':
word_prob = (value +1)/ total_skeptic
elif class_ == 'paranormal':
word_prob = (value+1)/ total_paranormal
#print (token)
word_logprobs[class_][token] = math.log(word_prob)
return word_logprobs
def launch_bigrams_and_words(in_path, expected_path):
word_counts = {'paranormal':defaultdict(int), 'sceptic': defaultdict(int)}
bigram_counts = {'paranormal' : defaultdict(int), 'sceptic' : defaultdict(int)}
with open(in_path) as infile, open(expected_path) as expected_file:
for line, exp in zip(infile, expected_file):
class_ = exp.rstrip('\n').replace(' ', '')
text, timestap = line.rstrip('\n').split('\t')
tokens = clear_post(text)
for index in range(len(tokens)-1):
# if there is next token we append current and next
bigram = tokens[index] + " " + tokens[index + 1]
#print(bigram)
#print (f"bigram constructed from ;;;;{tokens[index]}:{tokens[index+1]};;;;;;;")
if class_ == 'P':
bigram_counts['paranormal'][bigram] +=1
word_counts['paranormal'][tokens[index]] +=1
elif class_ == 'S':
bigram_counts['sceptic'][bigram] +=1
word_counts['sceptic'][tokens[index]] +=1
return bigram_counts, word_counts
2020-03-22 10:15:36 +01:00
def main():
2020-03-29 13:39:47 +02:00
if len(sys.argv) != 4:
print("syntax is ./train.py expected.tsv in.tsv model.pkl")
return
expected_file = str(sys.argv[1])
in_file = str(sys.argv[2])
model = str(sys.argv[3])
paranormal_class_logprob, sceptic_class_logprob = calc_class_logprob(expected_file)
2020-03-29 23:29:19 +02:00
#bigrams_count = calc_bigram_count(in_file, expected_file)
bigrams_count, words_count = launch_bigrams_and_words(in_file, expected_file)
2020-03-29 13:39:47 +02:00
bigram_logprobs = calc_bigram_logprobs(bigrams_count)
2020-03-29 23:29:19 +02:00
word_logprobs = calc_word_logprobs(words_count)
2020-03-29 13:39:47 +02:00
with open(model, 'wb') as f:
2020-03-29 23:29:19 +02:00
pickle.dump([paranormal_class_logprob, sceptic_class_logprob, bigram_logprobs, word_logprobs],f)
2020-03-22 10:15:36 +01:00
main()
2020-03-29 23:29:19 +02:00