#!/usr/bin/python3 from collections import defaultdict import math import pickle import re import sys def calc_class_logprob(expected_path): paranormal_classcount = 0 sceptic_classcount = 0 with open(expected_path) as f: for line in f: line = line.rstrip('\n').replace(' ','') if 'P' in line: paranormal_classcount +=1 elif 'S' in line: sceptic_classcount +=1 paranol_prob = paranormal_classcount / (paranormal_classcount + sceptic_classcount) sceptic_prob = sceptic_classcount / (paranormal_classcount + sceptic_classcount) return math.log(paranol_prob), math.log(sceptic_prob) def clear_post(post): post = post.replace('\\n', ' ') # delete links post = re.sub(r'(\(|)(http|https|www)[a-zA-Z0-9\.\:\/\_\=\&\;\?\+]+(\)|)', '', post) post = re.sub(r'[\.\,\/]+', ' ', post) post = re.sub(r'(<|>)','',post) post = re.sub(r'[\'\(\)\?\*\"\`\;0-9\[\]\:\%]+', '', post) post = re.sub(r' \- ', ' ', post) post = re.sub(r' +', ' ', post) post = post.rstrip(' ') return post def calc_bigram_count(in_path, expected_path): bigram_counts = {'paranormal' : defaultdict(int), 'sceptic' : defaultdict(int)} with open(in_path) as infile, open(expected_path) as expected_file: for line, exp in zip(infile, expected_file): class_ = exp.rstrip('\n').replace(' ', '') text, timestap = line.rstrip('\n').split('\t') text = clear_post(text) tokens = text.lower().split(' ') for index in range(len(tokens)-1): # if there is next token we append current and next bigram = tokens[index] + " " + tokens[index + 1] #print(bigram) #print (f"bigram constructed from ;;;;{tokens[index]}:{tokens[index+1]};;;;;;;") if class_ == 'P': bigram_counts['paranormal'][bigram] +=1 elif class_ == 'S': bigram_counts['sceptic'][bigram] +=1 return bigram_counts def calc_bigram_logprobs(bigram_counts): total_sceptic = sum(bigram_counts['sceptic'].values()) + len(bigram_counts['sceptic'].keys()) total_paranormal = sum(bigram_counts['paranormal'].values()) + len(bigram_counts['paranormal'].keys()) bigram_logprobs = {'paranormal' : {}, 'sceptic' : {}} for class_ in bigram_counts.keys(): for bigram, value in bigram_counts[class_].items(): if class_ == "sceptic": bigram_prob = (value + 1) / total_sceptic elif class_ == "paranormal": bigram_prob = (value + 1) / total_paranormal bigram_logprobs[class_][bigram] = math.log(bigram_prob) return bigram_logprobs def main(): if len(sys.argv) != 4: print("syntax is ./train.py expected.tsv in.tsv model.pkl") return expected_file = str(sys.argv[1]) in_file = str(sys.argv[2]) model = str(sys.argv[3]) paranormal_class_logprob, sceptic_class_logprob = calc_class_logprob(expected_file) bigrams_count = calc_bigram_count(in_file, expected_file) bigram_logprobs = calc_bigram_logprobs(bigrams_count) with open(model, 'wb') as f: pickle.dump([paranormal_class_logprob, sceptic_class_logprob, bigram_logprobs],f) main()