Compare commits

..

1 Commits
master ... 009

Author SHA1 Message Date
SzamanFL
2e735c936b Parialy working version of tetrragram 2020-12-09 09:57:05 +01:00
11 changed files with 2247 additions and 0 deletions

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,904 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import regex as re\n",
"\n",
"def into_words(sentence):\n",
" return re.findall(r'\\p{P}|[^\\p{P}\\s]+', sentence)\n",
"\n",
"def into_characters(sentence):\n",
" return list(sentence)\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Z',\n",
" 'a',\n",
" 'ż',\n",
" 'ó',\n",
" 'ł',\n",
" 'ć',\n",
" ' ',\n",
" 'j',\n",
" 'a',\n",
" 'ź',\n",
" 'n',\n",
" 'i',\n",
" 'ą',\n",
" ' ',\n",
" 'g',\n",
" 'ę',\n",
" 'ś',\n",
" 'l',\n",
" '.']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_characters(\"Zażółć jaźnią gęśl.\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Ala', 'has', 'a', 'cat', 'and', 'a', 'dog', '.']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_words(\"Ala has a cat and a dog.\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Humpty', '-', 'dumpty', '3s', ',', 'eg', '.', 'problems', '.']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_words(\"Humpty-dumpty 3s, eg. problems.\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Adam',\n",
" ',',\n",
" 'who',\n",
" 'smokes',\n",
" 'a',\n",
" 'lot',\n",
" ',',\n",
" 'caught',\n",
" 'COVID',\n",
" '-',\n",
" '19',\n",
" '.']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_words(\"Adam, who smokes a lot, caught COVID-19.\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['A', 'l', 'a', ' ', 'h', 'a', 's', ' ', 'a', ' ', 'c', 'a', 't', '.']"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_characters(\"Ala has a cat.\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"from syntok.tokenizer import Tokenizer\n",
"\n",
"def by_syntok(sentence):\n",
" tok = Tokenizer()\n",
" return [str(t) for t in tok.tokenize(sentence)]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Humpty',\n",
" '-dumpty',\n",
" ' and',\n",
" ' Alice',\n",
" ' has',\n",
" ' pets',\n",
" ' e.g',\n",
" '.',\n",
" ' dogs',\n",
" '!',\n",
" '!',\n",
" '!',\n",
" '!',\n",
" '!']"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"by_syntok(\"Humpty-dumpty and Alice has pets e.g. dogs!!!!!\")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"def add_markers(tokens):\n",
" return ['<BOS>'] + tokens + ['<EOS>']\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['<BOS>', 'This', 'is', 'a', 'black', 'cat', '.', '<EOS>']"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_markers(into_words('This is a black cat.'))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['<BOS>', 'Humpty', '-dumpty', ' jumped', '.', '<EOS>']"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_markers(by_syntok(\"Humpty-dumpty jumped.\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gathering simple counts"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"def gather_counts(from_n, to_n, sentences, splitter=lambda s: add_markers(into_words(s))):\n",
" counts = {}\n",
" counts[0] = {(): 0}\n",
" for sentence in sentences:\n",
" tokens = splitter(sentence)\n",
" ntokens = len(tokens)\n",
" counts[0][()] += ntokens\n",
" for n in range(from_n, to_n+1):\n",
" for i in range(0, ntokens-n+1):\n",
" ngram = tuple(tokens[i:i+n])\n",
" if n not in counts:\n",
" counts[n] = {}\n",
" \n",
" if ngram in counts[n]:\n",
" counts[n][ngram] += 1\n",
" else: \n",
" counts[n][ngram] = 1\n",
" return counts"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{0: {(): 17},\n",
" 1: {('<BOS>',): 3,\n",
" ('Ala',): 1,\n",
" ('ma',): 2,\n",
" ('kota',): 1,\n",
" ('.',): 2,\n",
" ('<EOS>',): 3,\n",
" ('Basia',): 1,\n",
" ('psa',): 1,\n",
" ('Gdzie',): 1,\n",
" ('mieszkasz',): 1,\n",
" ('?',): 1},\n",
" 2: {('<BOS>', 'Ala'): 1,\n",
" ('Ala', 'ma'): 1,\n",
" ('ma', 'kota'): 1,\n",
" ('kota', '.'): 1,\n",
" ('.', '<EOS>'): 2,\n",
" ('<BOS>', 'Basia'): 1,\n",
" ('Basia', 'ma'): 1,\n",
" ('ma', 'psa'): 1,\n",
" ('psa', '.'): 1,\n",
" ('<BOS>', 'Gdzie'): 1,\n",
" ('Gdzie', 'mieszkasz'): 1,\n",
" ('mieszkasz', '?'): 1,\n",
" ('?', '<EOS>'): 1},\n",
" 3: {('<BOS>', 'Ala', 'ma'): 1,\n",
" ('Ala', 'ma', 'kota'): 1,\n",
" ('ma', 'kota', '.'): 1,\n",
" ('kota', '.', '<EOS>'): 1,\n",
" ('<BOS>', 'Basia', 'ma'): 1,\n",
" ('Basia', 'ma', 'psa'): 1,\n",
" ('ma', 'psa', '.'): 1,\n",
" ('psa', '.', '<EOS>'): 1,\n",
" ('<BOS>', 'Gdzie', 'mieszkasz'): 1,\n",
" ('Gdzie', 'mieszkasz', '?'): 1,\n",
" ('mieszkasz', '?', '<EOS>'): 1}}"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gather_counts(1, 3, [\"Ala ma kota.\", 'Basia ma psa.', 'Gdzie mieszkasz?'])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"model = gather_counts(1, 4, [\"Ala ma kota.\", 'Basia ma psa.', 'Hej, gdzie teraz mieszkasz?'], splitter=lambda s: add_markers(by_syntok(s)))"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model[2][(' ma', ' kota')]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{('<BOS>',): 3,\n",
" ('Ala',): 1,\n",
" (' ma',): 2,\n",
" (' kota',): 1,\n",
" ('.',): 2,\n",
" ('<EOS>',): 3,\n",
" ('Basia',): 1,\n",
" (' psa',): 1,\n",
" ('Hej',): 1,\n",
" (',',): 1,\n",
" (' gdzie',): 1,\n",
" (' teraz',): 1,\n",
" (' mieszkasz',): 1,\n",
" ('?',): 1}"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model[1]"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"shakespeare=(s.strip() for s in open('100-0.txt') if re.search(r'\\S', s))\n"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<generator object <genexpr> at 0x7f7e5dfe1ba0>"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shakespeare"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\ufeffProject Gutenbergs The Complete Works of William Shakespeare, by William Shakespeare'"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This eBook is for the use of anyone anywhere in the United States and'"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'most other parts of the world at no cost and with almost no restrictions'"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"sh_model = gather_counts(1, 3, shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"877"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[2][('to', 'be')]"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"57"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[2][('be', 'to')]\n"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[1][('Poland',)]"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2283"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[1][('love',)]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"92615"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[1][(',',)]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{(): 1545199}"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[0]"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(',', 'my', 'lord')"
]
},
"execution_count": 71,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted(sh_model[3].keys(), key=lambda k: sh_model[3][k])[-5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple n-gram model\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Word sequence: $(w_1,...,w_N)$ and model $M$\n",
"We'd like to have $P_M(w_1,...,w_N)$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P(w_1,...,w_N) = P(w_1)P(w_2|w_1)P(w_3|w_1 w_2)\\ldots P(w_i|w_1 w_2 \\ldots w_{i-1}) \\ldots P(w_N|w_1 w_2 \\ldots w_{N-1})$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Assumption: probability of a word depends on a limited context"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Approximation, not true) \"Piotr, co mieszka w tym dużym zielonym budynku, kupił samochód.\" vs \"\"Anna, co mieszka w tym dużym zielonym budynku, kupiła samochód.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P(w_1,...,w_N) \\approx P(w_1)P(w_2|w_1)P(w_3|w_1 w_2)\\ldots P(w_i|w_{i-(n-1)} \\ldots w_{i-1}) \\ldots P(w_N|w_{N-(i-1)} \\ldots w_{N-1})$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"unigram model $P(w_1,...,w_N) \\approx P(w_1)\\ldots P(w_N) = \\prod P(w_i)$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"bigram model $P(w_1,...,w_N) \\appr('<BOS>',)ox \\prod P(w_i|w_{i-1})$"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"from math import log, exp\n",
"\n",
"def get_prob_simple(model, n, sentence):\n",
" logprob_total = 0\n",
" for i in range(0, len(sentence)-n+1):\n",
" ngram = tuple(sentence[i:i+n])\n",
" pre_ngram = tuple(sentence[i:i+n-1])\n",
" prob = model[n].get(ngram, 0) / model[n-1].get(pre_ngram, 0)\n",
" logprob_total += log(prob)\n",
" return logprob_total \n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\log(ab) = \\log a + \\log b$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\log \\prod P(w_i) = \\sum \\log P(w_i)$"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7.128462813174801e-07"
]
},
"execution_count": 101,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp(get_prob_simple(sh_model, 2, add_markers(into_words('I love thee.'))))"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8.585040690529112e-11"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp(get_prob_simple(sh_model, 1, add_markers(into_words('I love you.'))))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Smoothing"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
"def prob(count, total, nb_classes):\n",
" return count / total"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prob(3, 3, 2)"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
"def laplace(count, total, nb_classes, alpha=1.0):\n",
" return (count + alpha) / (total + nb_classes)"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.4"
]
},
"execution_count": 117,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"laplace(1, 3, 2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Smoothing in n-gram models"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [],
"source": [
"def get_prob_smoothed(model, n, sentence):\n",
" vocabulary_size = len(model[1])\n",
" \n",
" logprob_total = 0\n",
" for i in range(0, len(sentence)-n+1):\n",
" ngram = tuple(sentence[i:i+n])\n",
" pre_ngram = tuple(sentence[i:i+n-1])\n",
" prob = laplace(model[n].get(ngram, 0), model[n-1].get(pre_ngram, 0), vocabulary_size)\n",
" logprob_total += log(prob)\n",
" return logprob_total "
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.843912914870102e-16"
]
},
"execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp(get_prob_smoothed(sh_model, 1, add_markers(into_words('Love I Czechia.'))))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

147
src/Untitled.ipynb Normal file
View File

@ -0,0 +1,147 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from math import log, exp\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"def tokenize(segment):\n",
" date_begin, date_end, l_context, r_context, text = segment.rstrip('\\n').split('\\t') \n",
" return text\n",
"\n",
"def into_words(sentence):\n",
" return sentence.split(' ')#re.findall(r'\\p{P}|[^\\p{P}\\s]+', sentence)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"def add_markers(tokens):\n",
" return ['<BOS>'] + tokens + ['<EOS>']"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"def get_prob_smoothed(model, n, sentence):\n",
" vocabulary_size = len(model[1])\n",
" \n",
" logprob_total = 0\n",
" for i in range(0, len(sentence)-n+1):\n",
" ngram = tuple(sentence[i:i+n])\n",
" pre_ngram = tuple(sentence[i:i+n-1])\n",
" prob = laplace(model[n].get(ngram, 0), model[n-1].get(pre_ngram, 0), vocabulary_size)\n",
" logprob_total += log(prob)\n",
" return logprob_total "
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"def gather_counts(from_n, to_n, sentences):\n",
" counts = {}\n",
" counts[0] = {(): 0}\n",
" for sentence in sentences:\n",
" tokens = add_markers(into_words(sentence))\n",
" ntokens = len(tokens)\n",
" counts[0][()] += ntokens\n",
" for n in range(from_n, to_n+1):\n",
" for i in range(0, ntokens-n+1):\n",
" ngram = tuple(tokens[i:i+n])\n",
" if n not in counts:\n",
" counts[n] = {}\n",
" \n",
" if ngram in counts[n]:\n",
" counts[n][ngram] += 1\n",
" else: \n",
" counts[n][ngram] = 1\n",
" return counts"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"segments = []\n",
"with open('../train/train.tsv', encoding='utf-8') as file:\n",
" for line in file:\n",
" segments.append(tokenize(line))"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"ename": "MemoryError",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mMemoryError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-46-de4070661da2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgather_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msegments\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m<ipython-input-44-b19e9df03672>\u001b[0m in \u001b[0;36mgather_counts\u001b[0;34m(from_n, to_n, sentences)\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mcounts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mngram\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 17\u001b[0;31m \u001b[0mcounts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mngram\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 18\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcounts\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mMemoryError\u001b[0m: "
]
}
],
"source": [
"model = gather_counts(3, 4, segments)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

46
src/create_dictionary.py Normal file
View File

@ -0,0 +1,46 @@
#!/usr/bin/env python3
import sys, pickle
from math import exp, log
def add_markers(tokens):
return ['<BOS>'] + tokens + ['<EOS>']
def into_words(sentence):
a = sentence.split(' ')
return a
def gather_counts(from_n, to_n, sentences):
counts = {}
counts[0] = {() : 0}
for sentence in sentences:
tokens = add_markers(into_words(sentence))
ntokens = len(tokens)
counts[0][()] += ntokens
for n in range(from_n, to_n+1):
for i in range(0, ntokens-n+1):
ngram = tuple(tokens[i:i+n])
if n not in counts:
counts[n] = {}
if ngram in counts[n]:
counts[n][ngram] += 1
else:
counts[n][ngram] = 1
return counts
def tokenize (segment):
d, dd, l, r, text = segment.rstrip('\n').split('\t')
return text
sen = []
with open(sys.argv[1]) as file:
for line in file:
ss = tokenize(line)
sen.append(ss)
model_file = sys.argv[2]
model = gather_counts(3,3,sen)
with open(model_file, 'wb+') as p:
pickle.dump(model, p, pickle.HIGHEST_PROTOCOL)

53
src/functions.py Normal file
View File

@ -0,0 +1,53 @@
#!/usr/bin/env python
import sys
import re
from math import log, exp
import pickle
def add_markers(tokens):
return ['<BOS>'] + tokens + ['<EOS>']
def into_words(sentence):
return sentence.split(' ')#re.findall(r'\p{P}|[^\p{P}\s]+', sentence)
def gather_counts(from_n, to_n, sentences):
for sentence in sentences:
tokens = add_markers(into_words(sentence))
ntokens = len(tokens)
counts[0][()] += ntokens
for n in range(from_n, to_n+1):
for i in range(0, ntokens-n+1):
ngram = tuple(tokens[i:i+n])
if n not in counts:
counts[n] = {}
if ngram in counts[n]:
counts[n][ngram] += 1
else:
counts[n][ngram] = 1
def get_prob_smoothed(model, n, sentence):
vocabulary_size = len(model[1])
logprob_total = 0
for i in range(0, len(sentence)-n+1):
ngram = tuple(sentence[i:i+n])
pre_ngram = tuple(sentence[i:i+n-1])
prob = laplace(model[n].get(ngram, 0), model[n-1].get(pre_ngram, 0), vocabulary_size)
logprob_total += log(prob)
return logprob_total
def tokenize(segment):
date_begin, date_end, l_context, r_context, text = segment.rstrip('\n').split('\t')
return text
counts = {}
counts[0] = {(): 0}
for line in sys.stdin:
s = tokenize(line)
gather_counts(s)
pickle.dump(counts, open('model.pickle', 'wb+'))

54
src/functions.py.backup Normal file
View File

@ -0,0 +1,54 @@
#!/usr/bin/env python
import sys
import re
from math import log, exp
import pickle
def add_markers(tokens):
return ['<BOS>'] + tokens + ['<EOS>']
def into_words(sentence):
return sentence.split(' ')#re.findall(r'\p{P}|[^\p{P}\s]+', sentence)
def gather_counts(from_n, to_n, sentences):
for sentence in sentences:
tokens = add_markers(into_words(sentence))
ntokens = len(tokens)
counts[0][()] += ntokens
for n in range(from_n, to_n+1):
for i in range(0, ntokens-n+1):
ngram = tuple(tokens[i:i+n])
if n not in counts:
counts[n] = {}
if ngram in counts[n]:
counts[n][ngram] += 1
else:
counts[n][ngram] = 1
def get_prob_smoothed(model, n, sentence):
vocabulary_size = len(model[1])
logprob_total = 0
for i in range(0, len(sentence)-n+1):
ngram = tuple(sentence[i:i+n])
pre_ngram = tuple(sentence[i:i+n-1])
prob = laplace(model[n].get(ngram, 0), model[n-1].get(pre_ngram, 0), vocabulary_size)
logprob_total += log(prob)
return logprob_total
def tokenize(segment):
date_begin, date_end, l_context, r_context, text = segment.rstrip('\n').split('\t')
return text
counts = {}
counts[0] = {(): 0}
for line in sys.stdin:
s = tokenize(line)
gather_counts(s)
pickle.dump(counts, open('model.pickle', 'wb+'))

View File

@ -0,0 +1,65 @@
#!/usr/bin/env python
import sys
from math import log
import pickle
def laplace(count, total, nb_classes, alpha=1.0):
return (count + alpha) / (total + nb_classes)
def prob(count, total, nb_classes):
return count / total
def into_words(sentence):
return sentence.split(' ')
def get_log_prob(model, trigram, n, sentence):
vocabulary_size = len(model_unigram[1])
logprob_total = 0
#import ipdb; ipdb.set_trace()
for i in range(0, len(sentence)-n+1):
ngram = tuple(sentence[i:i+n])
pre_ngram = tuple(sentence[i:i+n-1])
prob = laplace(model[n].get(ngram, 0), trigram[3].get(pre_ngram, 0), vocabulary_size)
logprob_total += log(prob)
return logprob_total
def get_last(sentence):
year_s, year_e, text, text_rest = sentence.rstrip('\n').split('\t')
return text
#def find_next_word(words):
# candidate_list=[]
# for word in vocab:
# p = get_log_prob(model, 4, words)
# candidate
if len(sys.argv) != 6:
quit()
model_name = sys.argv[1]
with open(model_name, 'rb') as file:
model = pickle.load(file)
unigram_name = sys.argv[2]
with open(unigram_name, 'rb') as file:
model_unigram = pickle.load(file)
vocab = [i[0] for i in list(model_unigram[1])]
trigram_name = sys.argv[3]
with open(trigram_name, 'rb') as file:
model_trigram = pickle.load(file)
with open(sys.argv[4]) as file, open(sys.argv[5], 'w+') as out:
for line in file:
text = into_words(get_last(line))[-3:]
best_word = ("", -1000000)
for word in vocab:
filled = text + [word]
#import ipdb; ipdb.set_trace()
value = get_log_prob(model, model_trigram, 4, filled)
if value > best_word[1]:
best_word = (word, value)
out.write(best_word[0] + "\n")

0
src/out Normal file
View File

1
src/test_dev_0 Normal file
View File

@ -0,0 +1 @@
1874 1874.99999996829 tez wiecznym pokojem się ciosIi } ' . " - ' Poniewoi zaś musicie storać się oto , aby groi , ąoym niebezpiec : Leńst om Waslą władzą , roztropn { tścią i gorliwością zapobieas , przeto uZDacie , ie nic nie będzie stósowniejszcgo i poiyteczniejszego jsk S5Ułmć we wspólnej noradzie właściwych dróg , aby po ądany cel tern powniej i skuteczniej osiągnęć . Skoro prawa Kościoła są nnrU ! Jioue , obowiązkiem jest Waszym f.l ' onić wiernych ; tern bezpiecllłiej lią aś będzie osłona i tem siluiejszą obrona , im .vgodniej i ląc żnićj usiłowania pojedyńcle dtiolać będę , i im gQrliwiej obmyśhme i oznac ; ; ; olle p08t powal1ie , poło eniem rzeczy nakaz8no . Dla tego u , pomimmry Was , abyście jak mi : < ł.na najbardziej zebrali się i po wspólnej naradzie naznaczony paw " , i przeli Y ' szysłkich Pr.l ) jętą modłę , według której , jak tego iVas ! ll uuąd wymaga , jednozgodnie grozące _ le tłumili i wolności Kościoła sili ' iie bronili . Dia tego illJsieliśmy Was upomnieć , iiby się nie zda- \ \ ' rało , ie w t k " , ' dncj sprawie obowiązku NosJicge Iinniodbaliśill 1 ' . _ ' tlbowiom przekonani jesteśmy , ie- ) ; , yścio i bez tego NasEego upomnienia to uczynili . Nie nzekliśmy się takie jesloze nadzioi , ie Bóg odwróci Istniejące złe , gdył zagrzewa Nos del ) rą nadł : ieją prsywiązanie i wiaro Nł ! szego nojukochań- Siego syna w Chr } stusie , Cf ' sarZ ! 1 i królt ' Franciszka Józefa ; ktorego w ponownym liście z dnia dJ : i- eiejszego J : tego powodu zuklinaliśm ) r , oby nigdy nie dO.lwom , by w jego rozległem pnństwie KościGI poddnn , .. Ioostał han ! e mej nieV \ \ ' cli , a jego poddani kat.oliccy n3jwięka ym uciskom . Gdy atoli wielu uderze na Kościół b wszelka 1i ' J \ \ : ! oka nuder nif \ \ bezpieunę , ł ' ueto Wy JUijmniej moieoie trwać w nieoJ . ) ' -nnoici . Oby Bóg kierował Wn ! łemi pos ' anowienian , i i ' " sf ! iernł Wes swoj , potęiną or ; iekę , iibyśde zdJłali sJicJif2śliwie postallowić i } JrJiywieść do sl ; ułku , ce IJa chWflłę Jego Imienia i dla zbawienia dusz słuiy . Na znak tej Boskiej opieki i Nt1slicj S.l : ł ególnej pn ; ych ) JnoEci udJiielamy WatID wszyt ! iim i II ( } sobna kałdemu , ulmchoni Syn ( , Vlie i cxdg ( JdlJi BJ8cin , rreJ : vucho \ \ ' \ \ ieńslwu J wiern } m Waflzej opiece- powierzonym , miłościwe Nf S1 : e błogosławieństwo r-posłoJsllie . Dfn w Rzymie u św. Piotra. dnia 7 mar a 1874 , 28 pont } ' fikatu NVSJegci . ( } o się w tygodniu naj ' wułżniejszego stało " J. na 8wie ie . Niemcy . W.Berlinie obradowaTttj w sejmie oprócz o innych mniejszej wagi sprawach , o pra-wie prasowym , ł. j. o prawie tycz c1 ' m si go- , .et , pism f ' rukQwanycb , księ2e ; . i. t. d . Podowie bn \ \ \ \ arsc ) ' poslaH ndref do swego króla , w którym go proszą aby oparł się prawom nowomodnym w rle " liach religijnych i politycznych , które moją jeszcze być .uprowadzone w zjednonon ) " m państwie ni.emieckim. Król który w ogóle rządem muło się I : ojmuje , oddał pismo posłów ministrom . Wysłańcy b . ! warscy w bundesr .cie gło sowali za pr £ \ \ wem o uwięlirmiu i wypęda ; aniu II kraju , Nskupów i księiy , które to prawo wnet sejm lwi rzesz ) ' niemieckiej przedłoionym zostanie , gdzie naturalnie p % ejdliie . -- Tak nazwane 5to ' rV8rJ : yszenie chłopów bawarskich , do którego i naj w ięlisi panowie 08lełą , puesłało posłom bawarskim w Berlinie adres , prosląc ioh , aby racJ : ej sejm op uścili , niiby brali ud.iat w naradath nad prawami , sprzeciwiającymi si d wchowi katolickiemu i lifłckowawozemu ( konserwatywnemu ) PIUS IX. ludu bawarskiego . Rzęd pflelnl ! CI ł 250 , OÓO tala-rów na podwyiszen ' e pelJsyi . \ \ f1ięi-y , d ; ) ' ka- .dy miał przynajmniej 500 talarów . Pewnie żaden tisiąds

46
src/zad.py Normal file
View File

@ -0,0 +1,46 @@
#!/usr/bin/env python
import sys, pickle
from math import exp, log
def add_markers(tokens):
return ['<BOS>'] + tokens + ['<EOS>']
def into_words(sentence):
a = sentence.split(' ')
return a
def gather_counts(from_n, to_n, sentences):
counts = {}
counts[0] = {() : 0}
for sentence in sentences:
tokens = add_markers(into_words(sentence))
ntokens = len(tokens)
counts[0][()] += ntokens
for n in range(from_n, to_n+1):
for i in range(0, ntokens-n+1):
ngram = tuple(tokens[i:i+n])
if n not in counts:
counts[n] = {}
if ngram in counts[n]:
counts[n][ngram] += 1
else:
counts[n][ngram] = 1
return counts
def tokenize (segment):
d, dd, l, r, text = segment.rstrip('\n').split('\t')
return text
sen = []
with open(sys.argv[1]) as file:
for line in file:
ss = tokenize(line)
sen.append(ss)
model_file = sys.argv[2]
model = gather_counts(4,4,sen)
with open(model_file, 'wb+') as p:
pickle.dump(model, p, pickle.HIGHEST_PROTOCOL)

925
src/zajeciaipynb.ipynb Normal file
View File

@ -0,0 +1,925 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#import regex as re\n",
"\n",
"def into_words(sentence):\n",
" return sentence.split(' ')#re.findall(r'\\p{P}|[^\\p{P}\\s]+', sentence)\n",
"\n",
"def into_characters(sentence):\n",
" return list(sentence)\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Z',\n",
" 'a',\n",
" 'ż',\n",
" 'ó',\n",
" 'ł',\n",
" 'ć',\n",
" ' ',\n",
" 'j',\n",
" 'a',\n",
" 'ź',\n",
" 'n',\n",
" 'i',\n",
" 'ą',\n",
" ' ',\n",
" 'g',\n",
" 'ę',\n",
" 'ś',\n",
" 'l',\n",
" '.']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_characters(\"Zażółć jaźnią gęśl.\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Ala', 'has', 'a', 'cat', 'and', 'a', 'dog', '.']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_words(\"Ala has a cat and a dog.\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Humpty', '-', 'dumpty', '3s', ',', 'eg', '.', 'problems', '.']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_words(\"Humpty-dumpty 3s, eg. problems.\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Adam',\n",
" ',',\n",
" 'who',\n",
" 'smokes',\n",
" 'a',\n",
" 'lot',\n",
" ',',\n",
" 'caught',\n",
" 'COVID',\n",
" '-',\n",
" '19',\n",
" '.']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_words(\"Adam, who smokes a lot, caught COVID-19.\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['A', 'l', 'a', ' ', 'h', 'a', 's', ' ', 'a', ' ', 'c', 'a', 't', '.']"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"into_characters(\"Ala has a cat.\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"from syntok.tokenizer import Tokenizer\n",
"\n",
"def by_syntok(sentence):\n",
" tok = Tokenizer()\n",
" return [str(t) for t in tok.tokenize(sentence)]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Humpty',\n",
" '-dumpty',\n",
" ' and',\n",
" ' Alice',\n",
" ' has',\n",
" ' pets',\n",
" ' e.g',\n",
" '.',\n",
" ' dogs',\n",
" '!',\n",
" '!',\n",
" '!',\n",
" '!',\n",
" '!']"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"by_syntok(\"Humpty-dumpty and Alice has pets e.g. dogs!!!!!\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def add_markers(tokens):\n",
" return ['<BOS>'] + tokens + ['<EOS>']\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['<BOS>', 'This', 'is', 'a', 'black', 'cat', '.', '<EOS>']"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_markers(into_words('This is a black cat.'))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['<BOS>', 'Humpty', '-dumpty', ' jumped', '.', '<EOS>']"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_markers(by_syntok(\"Humpty-dumpty jumped.\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gathering simple counts"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"def gather_counts(from_n, to_n, sentences, splitter=lambda s: add_markers(into_words(s))):\n",
" counts = {}\n",
" counts[0] = {(): 0}\n",
" for sentence in sentences:\n",
" tokens = splitter(sentence)\n",
" ntokens = len(tokens)\n",
" counts[0][()] += ntokens\n",
" for n in range(from_n, to_n+1):\n",
" for i in range(0, ntokens-n+1):\n",
" ngram = tuple(tokens[i:i+n])\n",
" if n not in counts:\n",
" counts[n] = {}\n",
" \n",
" if ngram in counts[n]:\n",
" counts[n][ngram] += 1\n",
" else: \n",
" counts[n][ngram] = 1\n",
" return counts"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{0: {(): 17},\n",
" 1: {('<BOS>',): 3,\n",
" ('Ala',): 1,\n",
" ('ma',): 2,\n",
" ('kota',): 1,\n",
" ('.',): 2,\n",
" ('<EOS>',): 3,\n",
" ('Basia',): 1,\n",
" ('psa',): 1,\n",
" ('Gdzie',): 1,\n",
" ('mieszkasz',): 1,\n",
" ('?',): 1},\n",
" 2: {('<BOS>', 'Ala'): 1,\n",
" ('Ala', 'ma'): 1,\n",
" ('ma', 'kota'): 1,\n",
" ('kota', '.'): 1,\n",
" ('.', '<EOS>'): 2,\n",
" ('<BOS>', 'Basia'): 1,\n",
" ('Basia', 'ma'): 1,\n",
" ('ma', 'psa'): 1,\n",
" ('psa', '.'): 1,\n",
" ('<BOS>', 'Gdzie'): 1,\n",
" ('Gdzie', 'mieszkasz'): 1,\n",
" ('mieszkasz', '?'): 1,\n",
" ('?', '<EOS>'): 1},\n",
" 3: {('<BOS>', 'Ala', 'ma'): 1,\n",
" ('Ala', 'ma', 'kota'): 1,\n",
" ('ma', 'kota', '.'): 1,\n",
" ('kota', '.', '<EOS>'): 1,\n",
" ('<BOS>', 'Basia', 'ma'): 1,\n",
" ('Basia', 'ma', 'psa'): 1,\n",
" ('ma', 'psa', '.'): 1,\n",
" ('psa', '.', '<EOS>'): 1,\n",
" ('<BOS>', 'Gdzie', 'mieszkasz'): 1,\n",
" ('Gdzie', 'mieszkasz', '?'): 1,\n",
" ('mieszkasz', '?', '<EOS>'): 1}}"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gather_counts(1, 3, [\"Ala ma kota.\", 'Basia ma psa.', 'Gdzie mieszkasz?'])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"model = gather_counts(1, 4, [\"Ala ma kota.\", 'Basia ma psa.', 'Hej, gdzie teraz mieszkasz?'], splitter=lambda s: add_markers(by_syntok(s)))"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model[2][(' ma', ' kota')]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{('<BOS>',): 3,\n",
" ('Ala',): 1,\n",
" (' ma',): 2,\n",
" (' kota',): 1,\n",
" ('.',): 2,\n",
" ('<EOS>',): 3,\n",
" ('Basia',): 1,\n",
" (' psa',): 1,\n",
" ('Hej',): 1,\n",
" (',',): 1,\n",
" (' gdzie',): 1,\n",
" (' teraz',): 1,\n",
" (' mieszkasz',): 1,\n",
" ('?',): 1}"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model[1]"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"shakespeare=(s.strip() for s in open('100-0.txt') if re.search(r'\\S', s))\n"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<generator object <genexpr> at 0x7f7e5dfe1ba0>"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shakespeare"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\ufeffProject Gutenbergs The Complete Works of William Shakespeare, by William Shakespeare'"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This eBook is for the use of anyone anywhere in the United States and'"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'most other parts of the world at no cost and with almost no restrictions'"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"sh_model = gather_counts(1, 3, shakespeare)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"877"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[2][('to', 'be')]"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"57"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[2][('be', 'to')]\n"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[1][('Poland',)]"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2283"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[1][('love',)]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"92615"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[1][(',',)]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{(): 1545199}"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sh_model[0]"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(',', 'my', 'lord')"
]
},
"execution_count": 71,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted(sh_model[3].keys(), key=lambda k: sh_model[3][k])[-5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple n-gram model\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Word sequence: $(w_1,...,w_N)$ and model $M$\n",
"We'd like to have $P_M(w_1,...,w_N)$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P(w_1,...,w_N) = P(w_1)P(w_2|w_1)P(w_3|w_1 w_2)\\ldots P(w_i|w_1 w_2 \\ldots w_{i-1}) \\ldots P(w_N|w_1 w_2 \\ldots w_{N-1})$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Assumption: probability of a word depends on a limited context"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Approximation, not true) \"Piotr, co mieszka w tym dużym zielonym budynku, kupił samochód.\" vs \"\"Anna, co mieszka w tym dużym zielonym budynku, kupiła samochód.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P(w_1,...,w_N) \\approx P(w_1)P(w_2|w_1)P(w_3|w_1 w_2)\\ldots P(w_i|w_{i-(n-1)} \\ldots w_{i-1}) \\ldots P(w_N|w_{N-(i-1)} \\ldots w_{N-1})$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"unigram model $P(w_1,...,w_N) \\approx P(w_1)\\ldots P(w_N) = \\prod P(w_i)$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"bigram model $P(w_1,...,w_N) \\appr('<BOS>',)ox \\prod P(w_i|w_{i-1})$"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"from math import log, exp\n",
"\n",
"def get_prob_simple(model, n, sentence):\n",
" logprob_total = 0\n",
" for i in range(0, len(sentence)-n+1):\n",
" ngram = tuple(sentence[i:i+n])\n",
" pre_ngram = tuple(sentence[i:i+n-1])\n",
" prob = model[n].get(ngram, 0) / model[n-1].get(pre_ngram, 0)\n",
" logprob_total += log(prob)\n",
" return logprob_total \n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\log(ab) = \\log a + \\log b$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\log \\prod P(w_i) = \\sum \\log P(w_i)$"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7.128462813174801e-07"
]
},
"execution_count": 101,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp(get_prob_simple(sh_model, 2, add_markers(into_words('I love thee.'))))"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8.585040690529112e-11"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp(get_prob_simple(sh_model, 1, add_markers(into_words('I love you.'))))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Smoothing"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
"def prob(count, total, nb_classes):\n",
" return count / total"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prob(3, 3, 2)"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
"def laplace(count, total, nb_classes, alpha=1.0):\n",
" return (count + alpha) / (total + nb_classes)"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.4"
]
},
"execution_count": 117,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"laplace(1, 3, 2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Smoothing in n-gram models"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [],
"source": [
"def get_prob_smoothed(model, n, sentence):\n",
" vocabulary_size = len(model[1])\n",
" \n",
" logprob_total = 0\n",
" for i in range(0, len(sentence)-n+1):\n",
" ngram = tuple(sentence[i:i+n])\n",
" pre_ngram = tuple(sentence[i:i+n-1])\n",
" prob = laplace(model[n].get(ngram, 0), model[n-1].get(pre_ngram, 0), vocabulary_size)\n",
" logprob_total += log(prob)\n",
" return logprob_total "
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.843912914870102e-16"
]
},
"execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp(get_prob_smoothed(sh_model, 1, add_markers(into_words('Love I Czechia.'))))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['<BOS>', 'I', 'love', 'thee.', '<EOS>']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_markers(into_words('I love thee.'))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}