First draft of Machine translation

This commit is contained in:
SzamanFL 2021-01-17 22:46:46 +01:00
parent 9ec62bc7bb
commit ba956127bd
4 changed files with 208 additions and 14 deletions

23
src/Decoder.py Normal file
View File

@ -0,0 +1,23 @@
import torch.nn
import torch.nn.functional as F
class Decoder:
def __init__(self, hidden_size, output_size, num_layers=2):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self. embedding = nn.Embedding(output_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, output_size, num_layers=num_layers)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, x, hidden):
embedded = self.embedding(x).view(1, 1, -1)
output = F.relu(embedded)
output, hidden = self.lstm(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
def init_hidden(self, device):
return torch.zeros(1, 1, self.hidden_size, device=device)

17
src/Encoder.py Normal file
View File

@ -0,0 +1,17 @@
import torch.nn
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=4):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size. num_layers=num_layers)
def forward(self, x, hidden):
embedded = self.embedding(x).view(1,1,-1)
output, hidden = self.lstm(embedded, hidden)
return output, hidden
def init_hidden(self, device):
return torch.zeros(1, 1, self.hidden_size, device = device)

20
src/Vocab.py Normal file
View File

@ -0,0 +1,20 @@
class Vocab:
def __init__(self, lang):
self.lang = lang
self.word2index = {}
self.word2count = {}
self.index2word = {0 : "SOS", 1: "EOS"}
self.size = 2
def add_sentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def add_word(self, word):
if word not in self.word2index:
self.word2index[word] = self.size
self.word2count[word] = 1
self.index2word[self.size] = word
self.size += 1
else:
self.word2count[word] += 1

View File

@ -3,35 +3,169 @@
# an LSTM language model trained on sentence pairs # an LSTM language model trained on sentence pairs
import argparse import argparse
from collection import Counter import unicodedata
import torch
import random
import pickle
from Vocab import Vocab
MAX_LEN = 25
SOS=0
EOS=1
teacher_forcing_ratio=0.5
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def clear_line(string, target): def clear_line(string, target):
return re.sub("[^a-z ]", "", string.lower()), re.sub("[^a-z ]", "", target.lower()) string = ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
def read_clear_data(in_file_path, exptected_file_path): target = ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
string = re.sub("[^a-z ]", "", string.lower())
target = re.sub("[^a-z ]", "", target.lower())
return string, target
def read_clear_data(in_file_path, expected_file_path):
print("Reading data") print("Reading data")
source_data = [] pairs = []
target_data = [] with open(in_file_path) as in_file, open(expected_file_path) as exp_file:
with open(in_file_path) as in_file, open(exptected_file_path) as exp_file:
for string, target in zip(in_file, exp_file): for string, target in zip(in_file, exp_file):
string, target = clear_line(string, target) string, target = clear_line(string, target)
source_data.appen(string) if len(string.split(' ')) < MAX_LEN and len(target.split(' ')) < MAX_LEN:
target_data.appen(target) pairs.append([string, target])
return source_data, target_data input_vocab = Vocab("pl")
target_vocab = Vocab("en")
return pairs, input_vocab, target_vocab
def create_dict(data): def prepare_data(in_file_path, expected_file_path):
counter = Counter() pairs, input_vocab, target_vocab = read_clear_data(in_file_path, expected_file_path)
for line in data: for pair in pairs:
input_lang.add_sentence(pair[0])
target_lang.add_sentence(pair[1])
return pairs, input_vocab, target_vocab
def indexes_from_sentence(vocab, sentence):
return [vocab.word2index[word] for word in sentence.split(' ')]
def tensor_from_sentece(vocab, sentence):
indexes = indexes_from_sentence(vocab, sentence)
indexes.append(EOS)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1,1)
def tensors_from_pair(pair, input_vocab, target_vocab):
input_tensor = tensor_from_sentece(input_vocab, pair[0])
target_tensor = tensor_from_sentece(target_vocab, pair[1])
return (input_tensor, target_tensor)
def train(input_tensor, target_tensor, encoder, decoder, encoder_optim, decoder_optim, criterion, max_length=MAX_LENGTH):
if not checkpoint:
encoder_hidden = encoder.init_hidden(device)
encoder_optim.zero_grad()
decoder_optim.zero_grad()
input_len = input_tensor.size(0)
target_len = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for e in range(input_len):
encoder_output, encoder_hidden = encoder(input_tensor[e], encoder_hidden)
encoder_outputs[i] = encoder_output[0, 0]
decoder_hidden = encoder_hidden
decoder_input = torch.tensor([[SOS]], device=device)
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
for d in range(target_len):
decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
loss += criterion(decoder_output, target_tensor[d])
decoder_input = target_tensor[d]
else:
for d in range(target_len):
decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
topv, topi = decoder_output.topk(1)
dcoder_input = topi.squeeze().detach()
loss += criterion(decoder_output, target_tensor[d])
if decoder_input.item() == EOS:
break
loss.backward()
encoder_optim.step()
encoder_optim.step()
return loss.item()/ target_len
def train_iterate(pairs, encoder, decoder, n_iters, lr=0.01):
encoder_optim = torch.optim.SGD(encoder.parameters(), lr=lr)
decoder_optim = torch.optim.SGD(decoder.parameters(), lr=lr)
training_pairs = [tensors_from_pair(random.choice(pairs)) for i in range(n_iters)]
criterion = torch.nn.NLLLoss()
loss_total=0
for i in range(1, n_iters + 1):
training_pair = training_pairs[i - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train(input_tensor, target_tensor, encoder, de, encoder_optim, decoder_optim, criterion)
loss_total += loss
if i % 1000 == 0:
loss_avg = loss_total / 1000
print(f"lavg loss: {loss_avg}")
loss_total = 0
if i % 5000 == 0:
torch.save(encoder.state_dict(), f'models/encoder-{i}-{seed}')
torch.save(decoder.state_dict(), f'models/decoder-{i}-{seed}')
def main(): def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--in_f') parser.add_argument('--in_f')
parser.add_argument('--exp') parser.add_argument('--exp')
parser.add_argument("--vocab") parser.add_argument("--vocab")
parser.add_argument("--encoder")
parser.add_argument("--decoder")
parser.add_argument("--seed")
args = parser.parse_args() args = parser.parse_args()
source_data, target_data = read_clear_data(args.in_f, args.exp) if args.seed:
seed = int(args.seed)
else:
seed = random.rand
global seed
if args.vocab:
with open(args.vocab, 'wb+') as p:
pairs, input_vocab, target_vocab = pickle.load(p)
else:
pairs, input_vocab, target_vocab = prepare_data(args.in_f, args.exp)
with open("vocabs.pckl", 'rb') as p:
pickle.dump([pairs, input_vocab, target_vocab], p)
hidden_size = 256
encoder = Encoder(input_vocab.size, hidden_size).to(device)
decoder = Decoder(hidden_size, target_vocab.size).to(device)
if args.encoder:
encoder.load_state_dict(torch.load(args.encoder))
if args.decoder:
decoder.load_state_dict(torch.load(args.decoder))
train_iterate(pairs, encoder, decoder, 50000)
main() main()