1
0
forked from kalmar/DALGLI0
DALGLI0/polynomial.js
Kacper Kruczek 3393e46235 02
2018-06-29 16:10:38 +02:00

81 lines
1.9 KiB
JavaScript

class Polynomial {
constructor(coefArray) {
this.degree = coefArray.length - 1;
this.coefficients = coefArray;
}
}
exports.Class = Polynomial;
function multiply(p1, p2, n) {
let f = p1.coefficients;
let g = p2.coefficients;
result = new Array(f.length + g.length - 1).fill(0);
let tmp = [];
for (let i = 0; i < f.length; i++) {
for (let j = 0; j < g.length; j++) {
result[i + j] += f[i] * g[j];
}
}
return new Polynomial(result.map(x => (x % n) + (x < 0 ? n : 0)));
}
function divide(p1, p2, n) {
let inverse = (x) => {
for (let i = 1; i < 2; i++) {
let r = (i * x) % 2;
if (r == 1)
return i
else
throw "divisionError"
}
}
if (p1.degree < p2.degree)
return p1;
let f = p1.coefficients;
let g = p2.coefficients;
let g_lead_coef = g[g.length - 1];
let g_deg = p2.degree;
while (f.length >= g.length) {
let f_lead_coef = f[f.length - 1];
let tmp_coef = f_lead_coef * inverse(g_lead_coef);
let tmp_exp = f.length - 1 - g_deg;
let tmp = [];
for (let i = 0; i < tmp_exp; i++) {
tmp.push(0);
}
tmp.push(tmp_coef);
tmp_poly = new Polynomial(tmp);
let sub = multiply(p2, tmp_poly, n);
let tmp_f = [];
for (let i = 0; i < f.length; i++) {
for (let j = 0; j < sub.coefficients.length; j++) {
if (i == j)
tmp_f.push(f[i] - sub.coefficients[j]);
}
}
f = tmp_f.map(x => (x % n) + (x < 0 ? n : 0));
while (f && f[f.length - 1] === 0)
f.pop();
}
return new Polynomial(f);
}
function gcd(p1, p2, n) {
if (p2.coefficients.length === 0) {
return p1;
}
return gcd(p2, divide(p1, p2, n), n);
}
exports.multiply = multiply;
exports.divide = divide;
exports.gcd = gcd;