forked from kalmar/DALGLI0
81 lines
1.9 KiB
JavaScript
81 lines
1.9 KiB
JavaScript
class Polynomial {
|
|
constructor(coefArray) {
|
|
this.degree = coefArray.length - 1;
|
|
this.coefficients = coefArray;
|
|
}
|
|
}
|
|
|
|
exports.Class = Polynomial;
|
|
|
|
function multiply(p1, p2, n) {
|
|
|
|
let f = p1.coefficients;
|
|
let g = p2.coefficients;
|
|
result = new Array(f.length + g.length - 1).fill(0);
|
|
|
|
let tmp = [];
|
|
for (let i = 0; i < f.length; i++) {
|
|
for (let j = 0; j < g.length; j++) {
|
|
result[i + j] += f[i] * g[j];
|
|
}
|
|
}
|
|
return new Polynomial(result.map(x => (x % n) + (x < 0 ? n : 0)));
|
|
}
|
|
|
|
function divide(p1, p2, n) {
|
|
|
|
let inverse = (x) => {
|
|
for (let i = 1; i < 2; i++) {
|
|
let r = (i * x) % 2;
|
|
if (r == 1)
|
|
return i
|
|
else
|
|
throw "divisionError"
|
|
|
|
}
|
|
}
|
|
if (p1.degree < p2.degree)
|
|
return p1;
|
|
let f = p1.coefficients;
|
|
let g = p2.coefficients;
|
|
let g_lead_coef = g[g.length - 1];
|
|
let g_deg = p2.degree;
|
|
|
|
while (f.length >= g.length) {
|
|
|
|
let f_lead_coef = f[f.length - 1];
|
|
let tmp_coef = f_lead_coef * inverse(g_lead_coef);
|
|
let tmp_exp = f.length - 1 - g_deg;
|
|
let tmp = [];
|
|
for (let i = 0; i < tmp_exp; i++) {
|
|
tmp.push(0);
|
|
}
|
|
tmp.push(tmp_coef);
|
|
tmp_poly = new Polynomial(tmp);
|
|
let sub = multiply(p2, tmp_poly, n);
|
|
let tmp_f = [];
|
|
for (let i = 0; i < f.length; i++) {
|
|
for (let j = 0; j < sub.coefficients.length; j++) {
|
|
if (i == j)
|
|
tmp_f.push(f[i] - sub.coefficients[j]);
|
|
}
|
|
}
|
|
|
|
f = tmp_f.map(x => (x % n) + (x < 0 ? n : 0));
|
|
while (f && f[f.length - 1] === 0)
|
|
f.pop();
|
|
|
|
}
|
|
return new Polynomial(f);
|
|
}
|
|
|
|
function gcd(p1, p2, n) {
|
|
if (p2.coefficients.length === 0) {
|
|
return p1;
|
|
}
|
|
return gcd(p2, divide(p1, p2, n), n);
|
|
}
|
|
|
|
exports.multiply = multiply;
|
|
exports.divide = divide;
|
|
exports.gcd = gcd; |