challenging-america-word-ga.../run_neu_val.py

197 lines
5.5 KiB
Python
Raw Permalink Normal View History

2022-05-07 00:08:59 +02:00
from itertools import islice
import regex as re
import sys
from torchtext.vocab import build_vocab_from_iterator
import lzma
from torch import nn
import torch
from torch.utils.data import IterableDataset
import itertools
from torch.utils.data import DataLoader
import numpy as np
# def get_words_from_line(file_path):
# for index, line in enumerate(get_lines_from_file(file)):
# yield '<s>'
# for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
# yield m.group(0).lower()
# yield '</s>'
# if index == 10000:
# break
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
def get_words_lines_from_file(file_path):
with lzma.open(file_path, mode='rt') as file:
for index, line in enumerate(file):
text = line.split("\t")
yield get_words_from_line(re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n", " ").replace("\n", "").lower())))
if index == 50000:
break
vocab_size = 220
# vocab = build_vocab_from_iterator(
# get_words_lines_from_file('train/in.tsv.xz'),
# max_tokens=vocab_size,
# specials=['<unk>'])
#
# vocab.set_default_index(vocab['<unk>'])
vocab=None
embed_size = 100
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_words_lines_from_file(text_file),
max_tokens=vocabulary_size,
specials=['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_words_lines_from_file(self.text_file))))
def train():
batch_size = 100000
epochs = 5
train_dataset = Bigrams('train/in.tsv.xz', vocab_size)
valid_dataset = Bigrams('dev-0/in.tsv.xz', vocab_size)
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
valid_data_loader = DataLoader(valid_dataset, batch_size=batch_size)
model.train()
train_loss = 0.0
min_valid_loss = np.inf
for e in range(epochs):
step = 0
for x, y in train_data_loader:
# Transfer Data to GPU
x = x.to(device)
y = y.to(device)
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
ypredicted = model(x)
# Find the Loss
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
# Calculate gradients
loss.backward()
# Update Weights
optimizer.step()
# Calculate Loss
train_loss += loss.item()
# Validate
model.eval()
valid_loss = 0.0
for x, y in valid_data_loader:
# Transfer Data to GPU
x = x.to(device)
y = y.to(device)
# Forward Pass
target = model(x)
# Find the Loss
loss = criterion(target, y)
# Calculate Loss
valid_loss += loss.item()
print(f'Epoch {e + 1} \t\t '
f'Training Loss: {train_loss} \t\t '
f'Validation Loss: {valid_loss}')
if min_valid_loss > valid_loss:
print(f'Validation Loss Decreased({min_valid_loss:.6f}--->{valid_loss:.6f}) \t Saving The Model')
min_valid_loss = valid_loss
# Saving State Dict
torch.save(model.state_dict(), 'model1.bin')
def predict():
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
ixs = torch.tensor(vocab.forward(['for'])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
print(list(zip(top_words, top_indices, top_probs)))
def similar():
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
embeddings = model.model[0].weight
vec = embeddings[vocab['went']]
similarities = cos(vec, embeddings)
top = torch.topk(similarities, 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
print(list(zip(top_words, top_indices, top_probs)))
if __name__ == "__main__":
train()
# predict()