challenging-america-word-ga.../run.py

164 lines
4.4 KiB
Python
Raw Normal View History

2022-05-07 00:08:59 +02:00
from itertools import islice
2022-04-04 18:31:33 +02:00
import regex as re
2022-05-07 00:08:59 +02:00
import sys
from torchtext.vocab import build_vocab_from_iterator
2022-04-04 18:31:33 +02:00
import lzma
2022-05-07 00:08:59 +02:00
from torch import nn
import torch
from torch.utils.data import IterableDataset
import itertools
from torch.utils.data import DataLoader
import numpy as np
2022-05-07 00:08:59 +02:00
# def get_words_from_line(file_path):
# for index, line in enumerate(get_lines_from_file(file)):
# yield '<s>'
# for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
# yield m.group(0).lower()
# yield '</s>'
# if index == 10000:
# break
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
2022-04-25 16:58:55 +02:00
2022-05-07 00:08:59 +02:00
def get_words_lines_from_file(file_path):
with lzma.open(file_path, mode='rt') as file:
for index, line in enumerate(file):
2022-04-25 16:58:55 +02:00
text = line.split("\t")
2022-05-07 00:08:59 +02:00
yield get_words_from_line(re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n", " ").replace("\n", "").lower())))
if index == 50000:
break
vocab_size = 20000
vocab = build_vocab_from_iterator(
get_words_lines_from_file('train/in.tsv.xz'),
max_tokens=vocab_size,
specials=['<unk>'])
vocab.set_default_index(vocab['<unk>'])
# vocab=None
embed_size = 100
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_words_lines_from_file(text_file),
max_tokens=vocabulary_size,
specials=['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_words_lines_from_file(self.text_file))))
def train():
batch_size = 22000
train_dataset = Bigrams('train/in.tsv.xz', vocab_size)
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for x, y in train_data_loader:
# Transfer Data to GPU
x = x.to(device)
y = y.to(device)
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
ypredicted = model(x)
# Find the Loss
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
# Calculate gradients
loss.backward()
# Update Weights
optimizer.step()
torch.save(model.state_dict(), 'model1.bin')
def predict():
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
ixs = torch.tensor(vocab.forward(['for'])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
print(list(zip(top_words, top_indices, top_probs)))
def similar():
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
embeddings = model.model[0].weight
vec = embeddings[vocab['went']]
similarities = cos(vec, embeddings)
top = torch.topk(similarities, 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
print(list(zip(top_words, top_indices, top_probs)))
2022-04-25 16:58:55 +02:00
if __name__ == "__main__":
2022-05-07 00:08:59 +02:00
# train()
predict()