This commit is contained in:
Jan Nowak 2022-04-25 16:58:55 +02:00
parent 0aa79cba31
commit 8359ba19e6

83
run.py
View File

@ -5,45 +5,53 @@ from nltk.tokenize import RegexpTokenizer
from nltk import trigrams
import regex as re
import lzma
import kenlm
class WordPred:
def __init__(self):
self.tokenizer = RegexpTokenizer(r"\w+")
self.model = defaultdict(lambda: defaultdict(lambda: 0))
self.vocab = set()
self.alpha = 0.001
# self.model = defaultdict(lambda: defaultdict(lambda: 0))
self.model = kenlm.Model("model.binary")
self.words = set()
def read_file(self, file):
for line in file:
text = line.split("\t")
yield re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n"," ").replace("\n","").lower()))
for line in file:
text = line.split("\t")
yield re.sub(r"[^\w\d'\s]+", '',
re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n", " ").replace("\n", "").lower()))
def read_file_7(self, file):
for line in file:
text = line.split("\t")
yield re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', text[7].replace("\\n"," ").replace("\n","").lower()))
for line in file:
text = line.split("\t")
yield re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', text[7].replace("\\n", " ").replace("\n", "").lower()))
def read_train_data(self, file_path):
with lzma.open(file_path, mode='rt') as file:
for index, text in enumerate(self.read_file(file)):
tokens = self.tokenizer.tokenize(text)
for w1, w2, w3 in trigrams(tokens, pad_right=True, pad_left=True):
if w1 and w2 and w3:
self.model[(w2, w3)][w1] += 1
self.vocab.add(w1)
self.vocab.add(w2)
self.vocab.add(w3)
if index == 300000:
break
for word_pair in self.model:
num_n_grams = float(sum(self.model[word_pair].values()))
for word in self.model[word_pair]:
self.model[word_pair][word] = (self.model[word_pair][word] + self.alpha) / (num_n_grams + self.alpha*len(self.vocab))
def fill_words(self, file_path, output_file):
with open(output_file, 'w') as out:
with lzma.open(file_path, mode='rt') as file:
for text in self.read_file(file):
for word in text.split(" "):
if word not in self.words:
out.write(word + "\n")
self.words.add(word)
def generate_outputs(self, input_file, output_file):
def read_words(self, file_path):
with open(file_path, 'r') as fin:
for word in fin.readline():
self.words.add(word.replace("\n",""))
def create_train_file(self, file_path, output_path, rows=10000):
with open(output_path, 'w') as outputfile:
with lzma.open(file_path, mode='rt') as file:
for index, text in enumerate(self.read_file(file)):
outputfile.write(text)
if index == rows:
break
outputfile.close()
def generate_outputs(self, input_file, output_file):
with open(output_file, 'w') as outputf:
with lzma.open(input_file, mode='rt') as file:
for index, text in enumerate(self.read_file_7(file)):
@ -55,9 +63,8 @@ class WordPred:
outputf.write(prediction + '\n')
def predict_probs(self, word1, word2):
predictions = dict(self.model[word1, word2])
most_common = dict(Counter(predictions).most_common(6))
total_prob = 0.0
str_prediction = ''
@ -69,13 +76,13 @@ class WordPred:
return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
if 1 - total_prob >= 0.01:
str_prediction += f":{1-total_prob}"
str_prediction += f":{1 - total_prob}"
else:
str_prediction += f":0.01"
return str_prediction
wp = WordPred()
wp.read_train_data('train/in.tsv.xz')
wp.generate_outputs('dev-0/in.tsv.xz', 'dev-0/out.tsv')
wp.generate_outputs('test-A/in.tsv.xz', 'test-A/out.tsv')
if __name__ == "__main__":
wp = WordPred()
# wp.create_train_file("train/in.tsv.xz", "train/in.txt")
# wp.fill_words("train/in.tsv.xz", "words.txt")