Bigram neural finish.

This commit is contained in:
Jan Nowak 2022-05-07 14:53:24 +02:00
parent fd03c9369f
commit 9c381a9eea
3 changed files with 17979 additions and 17942 deletions

File diff suppressed because it is too large Load Diff

55
run.py
View File

@ -9,6 +9,8 @@ from torch.utils.data import IterableDataset
import itertools
from torch.utils.data import DataLoader
import numpy as np
from nltk.tokenize import RegexpTokenizer
from nltk import trigrams
# def get_words_from_line(file_path):
@ -20,6 +22,13 @@ import numpy as np
# if index == 10000:
# break
tokenizer = RegexpTokenizer(r"\w+")
def read_file_6(file):
for line in file:
text = line.split("\t")
yield re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', text[6].replace("\\n", " ").replace("\n", "").lower()))
def get_words_from_line(line):
line = line.rstrip()
@ -34,11 +43,11 @@ def get_words_lines_from_file(file_path):
for index, line in enumerate(file):
text = line.split("\t")
yield get_words_from_line(re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n", " ").replace("\n", "").lower())))
if index == 50000:
break
# if index == 1000:
# break
vocab_size = 20000
vocab_size = 30000
vocab = build_vocab_from_iterator(
get_words_lines_from_file('train/in.tsv.xz'),
@ -88,7 +97,7 @@ class Bigrams(IterableDataset):
def train():
batch_size = 22000
batch_size = 15000
train_dataset = Bigrams('train/in.tsv.xz', vocab_size)
@ -117,23 +126,32 @@ def train():
loss.backward()
# Update Weights
optimizer.step()
print(step)
torch.save(model.state_dict(), 'model1.bin')
def predict():
def predict(word):
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
ixs = torch.tensor(vocab.forward(['for'])).to(device)
ixs = torch.tensor(vocab.forward([word])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top = torch.topk(out[0], 8)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
print(list(zip(top_words, top_indices, top_probs)))
str_predictions = ""
lht = 1.0
for pred_word in list(zip(top_words, top_indices, top_probs)):
if lht - pred_word[2] >= 0:
str_predictions += f"{pred_word[0]}:{pred_word[2]} "
lht -= pred_word[2]
if lht != 1.0:
str_predictions += f":{lht}"
return str_predictions
def similar():
@ -158,6 +176,25 @@ def similar():
print(list(zip(top_words, top_indices, top_probs)))
def generate_outputs(input_file, output_file):
with open(output_file, 'w') as outputf:
with lzma.open(input_file, mode='rt') as file:
for index, text in enumerate(read_file_6(file)):
tokens = tokenizer.tokenize(text)
if len(tokens) < 4:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
prediction = predict(tokens[-1])
outputf.write(prediction + '\n')
if __name__ == "__main__":
# train()
predict()
# predict()
# generate_outputs("dev-0/in.tsv.xz", "dev-0/out.tsv")
generate_outputs("test-A/in.tsv.xz", "test-A/out.tsv")
# count_words = 0
# for i in get_words_lines_from_file('train/in.tsv.xz'):
# for j in i:
# count_words += 1
# print(count_words)

File diff suppressed because it is too large Load Diff